
AD-A241 453

NAVAL POSTGRADUATE SCHOOL
Monterey, California

V C T0 8 i99

THESIS

MULTIPARAMETER FORECASTING TECHNIQUES FOR
THE MARINE CORPS OFFICER

RATE GENERATOR

by

Charles J. Meha!ic

September, 1990

Thesis Advisor: Robert R. Read

Approved for public release; distribution is unlimited.

91-12568
/ 111,! it,!/, 1 IillH l~l :!l



THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REP'- iT DOCUMENTATION PAGE 0MB No. 0704-0188

1ta. REPORT SECURITY CLASSIFICA1 [ON I b. RESTRICTIVE MARKINGSUNCLASSIFIED

, a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited
2b. DECLASSIFICATIONiDOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(b)

6a. NAME OF PERFORMING ORGANIZATION [6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School Or Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUNDING;SPONSORINCG 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Including Security Classification)

MULTIPARAMETER FORECASTING TECHNICUES FOR THE MARINE CORPS OFFICER RATE GENERATOR

12 PERSONAL AUTHORS)
MEHALIC, Charles J.

13 TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. Page Count
Master's Thesis FROM TO 1990, September 1i?

16. SUPPLEMENTAL NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department
of Defense or the U.S. Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identity by block number)
FIELD GROUP SUB-GROUP Forecast, Attrition Estimation, Harrison, Winters. Bayesian, Seasonality,

I__ I IExponential smoothing, Skrinkage, Aggregation

19. ABSTRACT (Continue on reverse if necessary and identity by block number)
This thesis expands upon previous work in applying aggregation and shrinkage techniques to Marine Corps officer atirition
rate estimators. Until now, estimation was based upon available annual data, failing to consider within year seasonality as
a factor. Exploring modern short-term forecasting techniques which include a seasonal factor, this rescarch applies
seasonality on a quarterly basis with conversion flexibility to any desired cycle

We introduce and compare two models: the Harrison-Stevens Multi-State Bayesian mode: and the Winters Three-Parameter
Exponential Smoothing model Both methods provide capable forecasting and demonstrate the necessity of including
seasonality. The Harrison-Stevens approach has the advantage of providing a posterior distribution rather than a point
estimate, and proves to be trie superior model when forecasting beyond one period.

20 DISTRIBUTION AVAILABILTIY OF ABSTRACT la. ABSTRACT SECURITY CLASSIFICATION
X UNCLASSIFIED'UNLIMITED SAME AS RPT. DTIC Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL '22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

Robert R Read (A(Vo cMF; )?00 OR'Re,

DD Form 1473, JUN 86 Previous editions are obselete. SECURITY CLASSIFICATION OF THIS PAGE

S N 0102- .F-014-6603 Unclassified



Approved for public release; distribution is unlinited.

Multiparameter Forecasting Techniques

for the Marine Corps

Officer Rate Generator

by

Charles J. Mehalic

Major, United States Marine Corps

B.S., United States Naval Academy, 1976

M.S., University of Southern California, 19S1

Submitted in partial fulfillment

of the requirements for the degree of

MATER OF SCIENCE IN OPERATIONS RESEARCHl

from the

NAVAL POSTGRADUATE SCHOOL

September 1990

Author: _ _ _ _ _ _ _ _ _ _ _

Charles J. Mehalic

Approved by: ___ ___ ___ ___ ___

Robert R. Read, Thesis Advisor

LynR Whit Second Reader

Peter Purdue, Chairman

Department of Operations Research

ii



ABSTRACT

This thesis expands upon previous work in applying

aggregation and shrinkage techniques to Mirine Corps officer

attrition rate estimators. Until now, estimation was based

upcn available annual data, failing to consider within year

seasonality as a factor. Exploring modern short-term

forecasting techniques which include a seasonal factor, this

research applies seasonality on a quarterly basis with

conversion flexibility to any desired cycle.

We introduce and compare two models: the Harrison-Stevens

Multi-State Bayesian model and the Winters Three-Parameter

Exponential Smoothing model. Both methods provide capable

forecasting and demonstrate the necessity of including

seazonality. The Harrison-Stevens approach has the advantage

of providing a posterior distribution rather than a point

estimate, and proves to be the superior model when forecasting

beyond one period.

Accession For

NTT,1
'KD

iii r



THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases of

interest. While every effort has been made, within the tine

available, to ensure that the programs are free of

computational and logic errors, they cannot be considered

validated. Any application of these prograns without

additional verification is at the risk of the user.
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I. INTRODUCTION

A. GENERAL

This thesis investigates the use of modern short tern

forecasting within the framework established to build an

attrition rate generator for a large scale manpower flow

model; specifically the officer force of the U.S. Marine

Corps.

The Marine Corps is continuing the process of automating

their manpower planning, programming and budgeting processes

with the recently developed and highly organized Officer

Planning and Utilization System (OPUS). As this centrally

organized system evolves, more efficient methods of

anticipating personnel attrition from the Corps are needed.

Attrition includes those leaving the service through

retirement, resignation, discharge, disability or similar

reasons. The Navy Personnel Research and Development Center

(NPRDC) , San Diego, California, recently terminated efforts in

forecasting attrition through the Marine Corps Officer Rate

Projector (MCORP) . Decision Systems Associates, Inc. (DSAI),

of Rockville, Maryland, has been granted the contract for

future implementation of their forecasting Officer Rate

Generator (ORG).



Accurate forecasting of officer lossec is xtrecciy

important to the manpower planner. In military manpower

systems, most personnel flows are initiated by the cre3tion of

vacancies within the system. Losses in tho paygrado nierarc1 v

trigger promotions from lower grades. Vacancies generate a

need for new accessions to replenish the force. The lead time

in this process is great, thus qualit': forecasts are

essential. Underestimates of losses lead to too few

accessions, erroneous budget projections, and untimely

readiness problems. Overestimates uf losses can cause excess

accessions, promotion delays, underutilized personnel and

increased costs. The problem is compounded in that most

accessions begin at the lowest pay grade of Second Lieutenant

and s-. owy work their way up to the highest ranks over a

period of many yeavs.

The pres't ft-Lt n rate generator calculates empirical

attrition rates usling historical data with user-defined

weights and threshold parameters (Seigel, 1933). This

subjective input makes the curreic generat.r usceptilJ to

unintentional misuse. In support of the ORG, Professor Robert

R. Read of the Naval Postgraduate School has been working on

a number of modern techniques applied to tne problem of

estimating attrition rates for the numerous cells that appear

in manpower planning models. Special attention has been given

to the "small cell" problem; i.e., officer categories that

normally contain a few personnel. These cells are numerous,



and iistorical empirical rates for them are qene-rallyunotahlc

due to sporatic data. In addressing this problem, the

contract granted to DSAI specifically re uirc the

implementation of shrinkage techniques developed by Professor

Read and Major J. Misiewicz (Misiewicz, 19F') . Ther solution

to the "small cell" problem is explained in Chapter I:.

Due to data constraints, Misiewicz' thesis application is

based upon annual data and cannot provide for attrition

variability due to different seasonal periods. It rust 17

considered that attrition rates may be seasonally dependent.

In our study, the readily available data requires that we

approach officer attrition using the calendar year broken down

into three-month periods (quarters) and analyze various

seasonal forecasting techniques. The more refined objective

of the Marine Corps is to develop the capability to forecast

attrition on a monthly basis with projections to any" future

month desired.

B. BACKGROUND

Eight Master's theses have been produced by this prcect.

Each has made important contributions to the understandinq of

the problems associated with the "small cell".

Major D. Tucker provided detailed background into the

Marine Corps officer structure and the manpower planninj

process (Tucker, 19F5) . He provided basic attrition rate

theory and calculated attritcn rates in several forn&ts. h



tested three estimation schemes: maximum likelihood, Ja:e-

Stein, and minimax for a few selected paygrades and ri.itary

occupational specialties (MOS). His results strongly surpr t

use of James-Stein estimation of attrition rates. Mi'inarX wa

discarded as being too conservative for small cell use.

Major J. Robinson introduced the Efron-Morris liritc

translation shrinkage alternative to augment the James-Steir:

estimator (Robinson, 1986). He performed a more thorouih

validation using both original and transformed scale, a:>z

while confirming Tucker's results, he could not provid

consistent stable estimates for small cells.

Captain C. Dickinson continued the applicarion cf

shrinkage methods to estimating officer attrition rates

(Dickinson, 1938) . He applied the previously used methods and

an empirical Bayes estimator to a n~w and refined data base

which recorded "man-quarters" rather than "fiscal" data. This

approach was competitive with previous methods but instability

remained.

The next three studies used ad hoc methods to deal witY

the idea of cell aggregation. When applying shrinkaie

methods, aggregation of cells with low personnel inventory

into sets of cells with larger inventory is required. It was

believed that a mathematical approach to this question would

give relief to the instability problem encountered by others.

The objective is to use cells which demonstrate similar

attrition behavior.
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The first attempt to treat the aggregation problem was H.

Amin Elseramegy (Arnin Elseragemy, 1985). His use of the

Classification and Regression Tree (CART) program in forming

aggregates of cells exhibiting homogeneity of behavior in

attrition proved difficult. Efforts to learn the system,

computer memory space on the IBM 3033, and random partitioning

of data in this "top-down" system was limiting. The resulting

aggregations were awkward and generally unusable.

Substantial progress in the aggregation problem was made

by R. Larsen (Larsen, 1987). Using a second, more refined

d-ta base, he applied a hierarchical clustering algorithm and

exposed the relative importance of some special MOS cells and

years commissioned service (YCS) interva, s. The separation of

the aviation community into several groups explained much cf

the instability encountered in earlier studies. Larsen's work

provided the framework for the cell aggregation algorithm

developed by Misiewicz.

D. Hogan turned his attention to alternative methods for

attrition estimation (Hogan, 1986). Believing the existence

of a time series effect, Hogan explored an exponential

smoothing technique. This technique provided a way to update

estimates yearly with the passage of time through a weighted

smoothing constant, a. The results indicated that exponential

smoothing gave relief to the problem of estimating rates using

large time lags but with inconsistent results. Further study

5



into exponential smoothing is contained in this thesis and

discussed in Chapter V.

A logistic regression alternative was explored by N. Yzcin

(Yacin, 1987). This study provided some quantitative results

regarding similar attrition behavior with respect to years

commissioned service (YCS).

J. Misiewicz built upon the results of these previous

studies. Initially he integrated two efforts:

* the aggregation of cells into groups that exhibit
homogeneity of attrition behavior, and

* the development of "shrinkage" estimation techniques for
use in the individual groups.

A heuristic algorithm was developed and tested to treat the

aggregation problem with empirical Bayes methods used to serve

the multi-cell estimation requirements needed to preserve

fidelity. In essence, it is a modification of the Larsen

procedure. His results indicate stability in estimating

attrition rates for low inventory cells but presented no clear

favorite among six estimation methods. DSAI is presently

integrating the Larsen-Misiewicz small cell algorithm into the

ORG using the transformed scale, time dependent variance

method. Chapter III is an amplification of Misiewicz'

etorts. (Misiewicz, 1989)

6



C. OBJECTIVE

This thesis continues ongoing research in the developent

of the Officer Attrition Rate Generator for the U.S. Marine

Corps. Successful effort has been given to refining an

aggregation and shrinkage technique for handling the inherent

problem of forecasting in a small cell environment. General

stability is achieved through MOS and YCS grouping which

replaces the earlier ad hoc methods that led to historical

instability concerns.

The objective of our work is to tune the aggregation and

shrinkage algorithm developed by Major John Misiewicz, then

focus on estimation techniques which consider seasonality

forecasting factors. Two specific techniques are developed.

They are based upon:

* Winters Three Parameter Seasonal Exponential Smoothing
Model.

0 Multi-parameter Estimation and Forecasting using the "P.
J. Harrison and C. F. Stevens" approach in a finite-state
model.

The algorithm developed by Misiewicz is modified to view

forecasting from a "quarterly" perspective. A new data tape

is provided by MIIS, Headquarters, U.S. Marine Corps to assist

in this work, providing twelve years of data rather than ten

years as used in previous work. Most of Major Misiewicz's

work with small cell aggregation and expansion techniques will

remain intact, with moderate modifications of the expansion

parameters.

7



The Winters Seasonal Exponential Smoothing technique is

appropriate for seasonal time series data. It uses three

separate smoothing constants to describe the level of the

series, a linear trend, and a multiplicative seasonal factor.

Harrison and Stevens describe a new approach to short-term

forecasting, based upon Bayesian principles in conjunction

with a multi-state data generating model. The various states

correspond to the occurrences of transient errors and step

changes in trend and slope. The basis for this method is

founded upon what is commonly referred to as "Kalman Filters"

and should provide the following advantages:

* Recognition and responsiveness to transient errors and
sudden changes in trend and slope.

* Increased sensitivity when true trend, slope and step
changes occur.

* A joint distribution rather than a single-figure forecast.

* Known values for seasonality which can change with
additional data sets.

8



II. DATA BASE

A. GENERAL

Previously, the works of larsen and Misiewicz used a

refined data base compiled by NPRDC. It contained ten years

of inventory and attrition data from 1977-1986. The inv"-rnry

data provides annual totals of officer inventory in units of

man-quarters and was obtained from the Headquarters Master

File (HMF). The attrition data was accumulated in man-years

from the Quarterly Statistical Transaction File (STATS). To

be used together, the inventory data was divided by four in

order to convert to an annual (but not integer-valued) figure.

With NPRDC no longer on contract and DSAI not expecting to

obtain a usable monthly data base until September 1990, we

allied with MIIS, Headquarters, U.S. Marine Corps, Washington

D.C., for the preparation of a new data base. The NPRDC data

base contained annual attrition and inventory data by YCS,

paygrade, MOS, sex, commissioning source, education level and

service component. With multiple data base problems in

conjunction with limited time and resource, this degree of

detail was determined to be too ambitious.

Our objective was to obtain a central inventory and

attrition value for each quarter on cells defined by MOS,

paygrade, YCS, and service component. Unfortunately, the only

9



available inventory measures are instantaneous. At best, the

data base includes a snap-shot of the inventory on the final

day of the quarter and a tally of attrition over each cell.

Since attritions are not included in the inventory value, the

question arises as to what value to use for quarterly

inventory; the snap-shot value alone, or the snap-shot value

plus the quarterly attritions. Because many Marines

transition in and out of a cell during a period with only a

few being attritions, our computations are based upon the end-

of-period value. Numerous problems were encountered with this

data base, most notably lost records and significant attrition

rate outliers. To deal with these problems, it was necessary

for us to develop an outlier identification and replacement

system. Other discrepancies noticed include:

* Some negative value entries are listed for YCS (we assume
and change these to the equivalent positive value).

* In many senior officer records secondary MOS rather than
primary MOS are listed (without primary MOS information,
these records are unfortunately ignored).

* Listing of nonexistent MOS (we also ignore these records)

These discrepancies were dealt with individually.

B. FILE DEVELOPMENT

Appendix A displays a sample of the data found on the tape

provided by Headquarters, U.S. Marine Corps. The output

displays a single entry with the corresponding description of

10



what each field represents. Each entry is generally described

as a count of attrition and inventory for a given cell defined

by period, paygrade, YCS, MOS, and service component. The

coding of the data base is identical to that in previous work

with the following exceptions:

* The data base contains only paygrades 01 (Second
Lieutenant) through 05 (Lieutenant Colonel).

0 Some paygrades are followed by the code "E" to signify
prior enlisted Limited Duty Officer (LDO). As in prior
studies, we will limit our work to unrestricted officers,
therefore, these data entries will be ignored.

* YCS is truncated to an integer rather than rcunded as in
prior work. This is compensated for in the FORTRAN
program MCFIND which develops our data base.

* Actual primary MOS designations are used rather than
substitute codes, e.g., 0302 is listed for basic infantry
officer rather than 013 as found in prior work.

0 Service component is given a code of "1" to represent an
officer with a regular commission, and "2" to represent an
officer with a reserve commission.

* The period is designated using the last two digits of the
year and the two digits of the final month of the quarter
(e.g., 7903 represents the first quarter of 1979, 8612
represents the fourth quarter of 1986).

In ordez to make the data base usble, a FORTRAN prog.an

named MCFIND (Appendix B) was written which reads all records

in the main data base and develops a source data base (example

in Appendix A) for our actual use in the forecasting

algorithm. As in prior work, only unrestricted MOS fields are

considered; therefore, many records are eliminated from

consideration. In addition to correcting the YCS entries this

11



program selects and compiles the appropriate source data base

by reading the records of only the applicable paygrades (01

through 05) and MOS (those listed in Table 1 of Appendix C).

C. OUTLIER IDENTIFICATION AND REPLACEMENT

1. Policy Requirement

The existence of inventory outliers in the data base

is evident and is critical. The outliers usually relate to

system undercounts. Discussion with MIIS personnel at

Headquarters, U.S. Marine Corps yields the recognition of

periods of data omissions for reasons which n- un::,F-'ained.

In some cases the undercount in small while in certain cases

in which a significant inventory is known to exist, few or

none were recorded. In order to use the data base provided,

it is necessary to develop a policy to identify and replace

these outliers.

2. Outlier Identification

Using periodic (quarterly) data, cross-classified by

paygrade and MOS group, we appl- our outlier identification

procedures to the inventory values. This particular

aggregated classification of the data base is created using

our FORTRAN program MCMATX (Appendix B). Our purpose for

using this macro cross-classification is to provide for a

larger and more stable basis of outlier identification. The

outlier identification procedure is simple. For each paygrade

in a given MOS group, we find the inventory median over all

12



periods; an outlier is identified as being any period with an

inventory deviating from the median by more than two times the

interquartile range. This paygrade/MOS group/pericd

combination is then tagged as an outlier. This tag

additionally identifies each corresponding small cell (those

further characterized by YCS, specific MOS and service

component) outlier.

3. Outlier Rerplacement

Having identified the outlier cells, our first

approach is to replace the outlier cell with the median

inventory (target inventory) taken over all cells having the

same paygrade/MOS group over the three corresponding periods

both previous to and following the observed outlier. This

aggregate inventory level can then be extended to the smaller

classification including YCS (paygrade and MOS group is

further refined) and service component. While this approach

is sound given an adequate sample size, such a sample did not

always exist. Specifically, in the 12th period (the fourth

calendar quarter of 1980) the inventory recorded for Captains

of all MOS is ten or fewer.

An alternative replacement method is implemented which

replaces the tagged outlier cells with the mean inventory and

attrition values taken over the preceding four periods and

succeeding four. Because there are no four succeeding periods

in the case of period 45, three are used instead. Though

13



biased, this method is simple and is only applied in a few

rare incidents as discussed later.

4. Application

The identification of inventory outliers is

accomplished by using an APL function named OUTLY (Appendix

B). In order to minimize the impact of implementing our

outlier identification and replacement policy on the integrity

of the source data base, not all identified outliers are

replaced using the described method. Many outliers are on the

high side of the inventory distribution, and are assumed to be

accurate values. Some outliers are on the low side but

represent trends in the data or may only occur in a small

number of MOS groups. We only adjust those outliers in which

undercounts are suspected across the spectrum of all MOS

groups according to the procedures described. Specifically,

the cells determined to be faulty and selected for adjustment

are shown in Table 1.

TABLE 1. OUTLIER IDENTIFICATION

PAYGRADE OUTLIER PERIODS

2nd Lt 45

ist Lt 45

Captain 12 14 45

Major 8 12 14 45

LtCol 14 45

14



III. AGGREGATION AND SHRINKAGE PROCEDURES

A. GENERAL

This section summarizes the combined works of Misiewicz

and Larsen as it pertains to cell aggregation and expansion

procedures. Cell aggregation is the collection of cells

possessing homogeneity of behavior with respect to attrition.

In the original MCORP model, cells were aggregated by pooling

several into a single cell in order to meet a user-defined

minimum inventory threshold. This single cell was then used

to determine the attrition rate estimate for the original,

user targeted cell. Rather than aggregating into a single

cell, the Larsen-Misiewicz' procedure pools cells into subsets

of cells meeting user-defined specifications described belo'.

This is necessary to provide the proper setting for the

application of shrinkage techniques. Cell expansion prcvides

the means by which cells are selected for aggregation so as to

meet user specifications and "shrink" individual cell averages

towards a more statistically stable "grand mean".

B. EXPANSION

Larsen's application of a hierarchical clustering

algorithm to the NPRDC data set provided a major breakthrough

in cell aggregation. His analysis developed the general idea

of a hierarchy of MOS groups, with each Marine Corps primary

15



MOS belonging to one of fourteen small MOS groups, one of six

large MOS groups, and one of four major MOS groups.

Misiewicz' modifications to the original grouping are rinimal

and is displayed in Table 1 of Appendix C. Table 2 of

Appendix C displays the YCS expansion bounds which reflect the

maximum expansion allowed from the i. itial YCS defined cell.

The expansion process is an extension of the Small Cell

Override Methodology used by NPRDC. Expansion involves

finding more cells to be used to produce a number of cells

with similar attrition characteristics. The end objective is

to produce a collection of cells having moderate personnel

inventories whose attrition rates can be "shrunk" towards the

weighted grand mean. Greater stability for the attrition

rates is achieved in this way. Expansion can be achieved

using MOS and YCS. MOS expansion takes place on the range

from the small group to the large group and then to the major

MOS group. With YCS, we expand one year at a time over the

allowable bound, usually in an alternating fashion. If the

user-defined year is given as YCS, the expansion proceeds to

YCS.-:, CIS.-, YCS.., YCS ,., etc. As the expansion process

continues on the YCS scale, aggregation is recomputed at each

step in the process.

The manpower planner initiates the shrinkage process by

defining a cell for which an attrition rate estimate is

required. He then defines the minimum cell inventory

16



threshold, denoted as T,,, as well as a minimum number of cells

in the aggregate subset which must exceed the cell inventory

threshold, denoted as K,.

Since expansion is only made upon MOS groups and YCS, all

other defined categories remain fixed. Whereas Misiewicz

defines these categories as paygrade, service component and

commissioning source (and additionally discusses sex,

education and others), because of our data base, we have

modified the algorithm to conrider only MOS, YCS, paygrade and

service component. The steps of the expansion are summarized

in the following six stages:

* Stage 1 - Locate the small MOS group which contains the
user-defined MOS. The MOSs in this group specify the
initial cells for the user-defined YCS, paygrade, and
service component. These cells are aggregated to obtain
cells with average inventory greater than or equal to T.
If the number of aggregated cells exceeds K., stop,
otherwise continue to stage 2.

* Stage 2 - Expand by incrementing YCS one yea- at a time
according to the bounds in Table 2 of Appendix C for all
MOSs in the small MOS group. After each increment,
aggregate and check to see if T- and K are achieved. If
so, stop, otherwise continue to increment YCS. If the YCS
bound is reached before meeting user specifications,
rptain the cell idcn.tified in stages 1 and 2, and
continue to stage 3.

* Stage 3 - Expand to the large MOS group for the single
defined YCS, aggregate to attain cells with average
inventory of at least T,, then check to see if K- cells
have been achieved. If so, stop, otherwise continue to
stage 4.

* Stage 4 - Expand by incrementing YCS for the large MOS
group as was done in stage 2. After each increment of
YCS, perform aggregation to obtain cells of minimum size
T , then check to see if K cells are obtained. If so,

17



stop, otherwise continue to increment YCS. If the bound
is reached before meeting user specifications, retain the
cells identified and continue with stage 5.

* Stage 5 - Expand to the major MOS group for the defined
YCS. Aggregate and check as in stage 3. If the
specifications are not met, go to stage 6.

* Stage 6 - Expand by incrementing YCS for the major MOS
group as was done for the large group in stage 4. If the
YCS bound is reached before obtaining enough aggregated
cells, stop. No more expansion is allowed. The user
thresholds are unattainable.

It is important to note that the cells identified by

previous stages are retained to subsequent stages to maintain

the greatest degree of homogeneity. We desire to locate as

many cells from the small MOS group as possible prior to

expanding to the large MOS group. But, when aggregating

cells, it is important to note that all prior aggregation is

discarded. The pooling of all currently identified cells

enhances greater flexibility and optimality in the aggregation

algorithm.

C. AGGREGATION

While the expansion stages seek to achieve the threshold

levels specified by the user, those cells with inventory less

than T, must be gathered into larqer, aggregated cells whosf:

combined inventory meets or exceeds T,.. To limit the

expansion to as few additional MOSs and YCSs as possible, we

desire to maximize the number of aggregated cells at any stage



of the expansion. Misiewicz successfully employs a heuristic

"greedy" algorithm to approximate optimality in aggregation.

A summary of the heuristic algorithm is as follows:

* Given a set of cells S, partition them into two subsets;
S., consisting of cells of inventory greater than T,, and

S2, consisting of cells of inventory less than T-. Those
cells of S, are then moved to the set K, and counted
against K,,.

* The remaining cells in S2 are ordered by inventory size.
Selecting the cell of greatest inventory, c,, find the
smallest cell remaining which when united with c., results
in a cell inventory at least T-. This combined cell is
then moved to K, and the process continues.

* If no single cell when combined with the cell having c,
exceeds To, then combine the two cells of greatest
inventory, then find the smallest cell remaining which
when united with these two cells, results in a cell
inventory at least T., and so forth.

* Continue this procedure until the sum of all cells
remaining in S2 do not add to T,. They are then

aggregated to the cells in K according to order, e.g., the
largest remaining cell in S, is aggregated to the smallest
aggregated cell in K, etc.

0 When the number of aggregated cells in K does not meet the
specifications of K,, expansion is required, all

identified cells are retained, but the aggregation of
cells is discarded.

Misiewicz used ad hoc methods for selecting values for T-

and K-,, and limited the normal ranqe from five to thirty. He

further constrains T, to be less than or equal to K,. Appendix

B coi'.ains our modified FORTRAN version of the Misiewicz

algorithm (MC90). This algorithm is suited to our data base

and allows quarterly estimation of attrition rates.
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IV. SEASONALITY

A. GENERAL

While the results obtained by Misiewicz show promising

stability of estimators for a single year lead time, it is

felt that better estimators for shorter periods may be

achievable through analysis of seasonal behavior. A main

advantage in applying the Harrison-Stevens approach to short-

term forecasting (Harrison-Stevens, 1967) or the Winters'

method of exponential seasonal smoothing (Makridakis and

Wheelwright, 1978) is the incorporation of a value to account

for variability between seasons. These methods are explained

in Chapter V.

Common examples of seasonality are recognized when

discussing monthly rainfall over a ten year period, quarterly

home sales over a six-year period, or daily amusement park

attendance over the eighteen-week summer. A snapshot look at

the Marine Corps officer attrition data for any given year

will show differing levels between the four quarters of that

year. In general, we find that attrition rates are

consistently highest during the third quarter of the calendar

year and lowest during the first quarter of the year. This

phenomena is present for many reasons, but may be generalized

by two factors:
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0 There exists a higher number of contractual expirations
during the summer months due to the high rate of entries
during the summer.

* Many officers choose to terminate service during the
summer months for family convenience, (e.g., when the
children are out of school for the summer break).

Since efforts are directed toward establishing forecasts by

some period of time, it would be desirable to find a seasonal

factor which improves the forecast for each quarter. Some

applications of ORG require monthly estimation.

For seasonality to be applicable, it is desirable to show

that there is dependency between forecasting factors and

seasonality. With periodic homogeneity (stationarity) from

one season to the next, our seasonal factors (s,(k),

k=1,2,3,4) of the Harrison-Stevens approach, or the seasonal

index (S(k), k=1,2,3,4} of the Winters forecasting method,

would be equal to one. The variable k, used in conjunction

with the seasonal factors, represents the four quarters of the

year. Failing stationarity, our approach to seasonality

analysis has been wide in scope, including use of:

* A single set of four seasonality values held constant over
all periods (one for each quarter of the calendar year).

* A simple set of seasonality values which are updated over
each subsequent period.

* Seasonality values which are updated based upon retention
rates rather than attrition rates.

* A complex set of seasonality values which are cell (PG,
MOS, YCS, and SC) specific and updated quarterly.
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* Seasonal values Sk scaled with two alternative constraints
given as:

Sk (4.1)k= - iI
4

4

r Sk = (4.2)
k=l

In our analysis of seasonality, we have looked at all of the

above, and in numerous combinations. The least complicated

method would be to calculate four constant seasonal values for

officer attrition over the life of the system where the

average of these values is equal to one. While this method,

discussed in the next section, fails due to instability in the

season values, it can be used to initialize other systems.

The values are then updated at each period in the process.

This procedure is discussed next. The final method discussed

mirrors that of the preceding section with the main difference

being that the product of the seasonal values equals one

rather than the average equalling one. For the mathematical

computations of this method, we are required to base the

seasonal values on the officer continuation rate rather than

the complementary attrition rate.
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B. SEASONAL VALUES CONSTANT OVER CELL TYPES

The simplest approach in dealing with seasonality is to

estimate a set of seasonal values for each of the four

periods. We define p,., as the attrition rate for each MOS

group/paygrade combination (i,j) and season k. Let p_- be the

quarterly average attrition rate over the four seasons. It is

most convenient to have seasonal constants s,,...,s, which do

not depend on (i, j), such that P,,k = p:ls, . This also includes

the special case of stationarity when all s-. = 1. As a forral

test of this hypothesis we have

14o: P-k = (4.3)

Ha: -PI y P Sk

where }{, is the null hypothesis.

In testing the hypothesis of equation (4.3), we estimate

p,., with

(4.4)

where y,,, is the attrition values and n,. is the inventory

values. Also,

7 - "(4.5a)
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and

4
n. k (4.5b)
Y..k

k n.k

where a subscript dot indicates summation over all values of

that index. The s, estimates are indicated in Table 2.

The test statistic is then computed and compared to the

X2 d, or the normal approximation for large degrees of freedom.

The test statistic is

(P - PlJ sk)
TS ni (ilk(4.6)

j k fij 1Sk ( 1 ij §k)

with the degrees of freedom, df = IJK - 3 = 277.

TABLE 2. CONSTANT SEASONAL VALUES

QUARTERLY 1st QTR 2nd QTR 3rd QTR 4th QTR

Loss TA 3497 5733 6198 4870

Inv'try n..k 3,792,668 3,922,789 3,838,841 3,816,026

y.. / n..k .0009220 .0014615 .0016188 .0012762

Seas'ty ,k 0.6987 1.1075 1.2267 0.9671
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It was decided to try this method (equation 4.3) for fixed

ranks, i.e., separate tests for individual fixed paygrade j.

Figure 1 gives a sample output comparing the test statistic to

the computed X2 values for individual MOS group/paygrade

combinations. It is evident that a constant set of seasonal

values supports the null hypothesis when specifically

forecasting attrition rates for the ranks of Major and

Lieutenant Colonel, but fails due to instability in the lower

officer ranks.

HYPOTHESIS TESTS FOR SPECIFIC PAYGRADES
(.05 Level of Significance -- 39 degrees of freedom)

2ND LIEUTENANTS
THE TEST STATISTIC IS 283.03798
CHI SQUARE CRITICAL VALUE 54.51346

IST LIEUTENANTS
THE TEST STATISTIC IS 55.93979
CHI SQUARE CRITICAL VALUE 54.51346

CAPTAINS
THE TEST STATISTIC IS 61.40886
CHI SQUARE CRITICAL VALUE 54.51346

MAJORS
THE TEST STATISTIC IS 33.91452
CHI SQUARE CRITICAL VALUE 54.51346

LT COLONELS
THE TEST STATISTIC IS 24.34368
CHI SQUARE CRITICAL VALUE 54.51346

Figure 1. Hypothesis Test on Paygrades
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Testing this hypothesis on multiple ranks in combination

fared no better, with Majors and Lieutenant Colonels in

combination being the only case in which the null hypothesis

could not be rejected. Example outputs are displayed in

Figure 2. The overall test of equation (4.6) failed as well.

HYPOTHESIS TESTS FOR PAYGRADE COMBINATIONS
(.05 Level of Significance -- 81 degrees of freedom)

IST LIEUTENANTS AND CAPTAINS
THE TEST STATISTIC IS 122.93209
CHI SQUARE CRITICAL VALUE 102.93406

IST LIEUTENANTS AND MAJORS
THE TEST STATISTIC IS 148.78286
CHI SQUARE CRITICAL VALUE 102.93406

CAPTAINS AND MAJORS
THE TEST STATISTIC Tc 13'.U607
CHI SQUARE CRITICAL VALUE 102.93406

MAJORS AND LT COLONELS
THE TEST STATISTIC IS 64.60649
CHI SQUARE CRITICAL VALUE 102.93406

CAPTAINS AND LT COLONELS
THE TEST STATISTIC IS 117.27334
CHI SQUARE CRITICAL VALUE 102.93406

Figure 2. Hypothesis test for Grade Combinations

C. PERIODIC UPDATES TO SEASONAL VALUES WITH A MEAN OF ONE

In many applications, seasonal factors tend to be constant

from y ar to year. When viewing the trend of demand for a

product, or the trend of attrition rates from the Marine
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Corps, changes cf season patterns are likely but inherently

difficult to detect quickly. When seasonal factors change,

means of modifying them are required.

To initialize seasonal values, the maximum likelihood

estimator discussed in the previous section is used.

Following each periodic forecast, we update all four season

values as follows. Let:

d, = current attrition rate,
mt = current trend value,
k = season {k = 1,2,3,4),
A= seasonal update factor.

Let:

ek = t k (4.7)

represent the difference between the crude estimate d,/m, from

the current data, and the current seasonal estimate k We

update the four seasonal values as follows:

i + Aek (z = k),veWAll ek (4.8)
New = _ A3ek (z + k)(

For quarterly data, Harrison and Scott find values of A,

in the range 0.1 to 0.3 useful (Harrison and Scott,1965).
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D. MULTIPLICATIVE SEASONALITY PROCESS ON CONTINUATION RATES

Since the modelling of the attrition process can be viewed

as Bernoulli trials of a Binomial process, it is natural to

consider a multiplicative version of the seasonality

adjustment from year to year. Further studies by Harrison and

Scott find that the multiplicative model may be more suited

for most seasonal data. Because of the computations involved,

we are required to view this process from a continuation rate

rather than attrition rate perspective. The rationale is as

follows:

Let q = 1 - p be the yearly continuation rate, where p is

the yearly attrition rate; let nk be the quarterly personnel

inventory values; and let yk be the personnel losses for the

quarters where (k = 1,2,3,4). The estimated quarterly

continuation rates are computed as:

= 1 Yk for k=1,2,3,4 (4.q)nk

and, by independence of time periods, the estimated yearly

continuation rate is:
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4

= 11 q(4.10)
k41

Any inhomogeneities in the quarterly rates are attributed to

seasonal factors; therefore:

qk = q Sk where q = (4.11)

is the seasonally adjusted quarterly continuation rate. It

follows that:

4 4 4

q = fi qk = Hi q-Sk = qfl Sk (4.12)
k=I k=1

which implies that the product of the seasonal factors is

equal to one.

A basic and initialization estimate of the (s.) values can

be made using modified minimum X2 procedures. Specifically,
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E k(qk - sj q)

,k Pk qPg (4.13)

j( Pk Pk

A LaGrangian term is included to treat the constraint. So

minimize

nrS- - S q* + XZ lri(s,, (4.14)[ Pk Pk I

then, the estimators which minimize (4.14) satisfy

k , k " k=1,2,3,4 (4.15)

Since the product of the four seasonal values is equal to one,

equation (4.15) can be multiplied over all seasons to obtain

n "7 H nk (4.16)

From equations (4.15) and (4.16), we can solve:
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k k

= J, (4.17)

("j- yj')
\k nk

Through reduction, the seasonal values may bc computed using

equation (4.17) to form equation (4.18):

4 2

Y8_k (4.18)

cr we may accept the ad hoc estimation based upon equation

(4.i9) (which we choose to do in our model) to solve the

seasonal values in equation (4.20):

(4.19)
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n (4.20)

k

The multiplicative version of periodic updating is

weighted with its prior calculation and is generally:

s,= (s*) ( :-)  P (4.21)

for some 0 < 0 < 1.0, where s,-. is the seasonal value for the

previous year during this quarter, and St* is the seasonal

adjustment based upon the immediate data.

As this method is based upon continuation rates, the

attrition rate forecast is simply found from:

Pk = 1 - C*S : , (4.22)

Some final notes need to be made regarding the

mathematical feasibility of this approach. Obviously, there

must be a positive inventory value for each n, or else we

would be attempting division by zero when computing the

continuation rates. Additionally, the continuation rate

cannot be zero (attrition of the entire cell inventory) , as it

is used in the denominator when updating the seasonal values.
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We observe six instances out of 3080 MOS/paygrade/season data

observations where the continuation rate equals zero (y = n =

1). We choose to compensate in these irregular instances

using the LaPlace Law of Succession whereby the inventory is

incremented by two and the continuation is incremented by one,

so that we have

SPk = k (4.23)
n+2
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V. ESTIMATION METHODS

A. WINTERS THREE PARAMETER SEASONAL EXPONENTIAL SMOOTHING

Exponential smoothing methods are appropriate for time

series that have a constant mean or a mean that changes

gradually with time. Three linear exponential methods are

examined by Makridakis and Wheelwright in an attempt to deal

directly with non-stationary time series that exhibit a

significant trend. They differ from single exponential

smoothing in that they introduce additional formulas that

estimate the trend so that it can be subsequently used to

improve forecasting efforts.

In developing the Winters model we build upon Brown's One

Parameter Linear Exponential Smoothing which was used by

Hogan. With D, given as the attrition rate in period t, the

equations used in Brown's mcdel are:

= aD t + (I - a) E'- (5.1)

aE + (1 - (5.2)

where E,' is the single exponentially smoothed value of D in

time t, and E.'' is the double exponentially smoothed value of

D for that time period;
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b a (E,~~) (5.3)
1-a

where b, is an estimate of trend;

a= I E+ (E, - 1j) =2E,- P'S (5.4)

where a, is an estimate of the intercept; and finally, the

forecasts are found using:

D* C U = at + ub t  (5.5)

where u is the number of periods ahead to be forecast.

The first equation is simply the formula used for single

exponential smoothing. The next serves to smooth the values

of the first equation. It is introduced to estimate the trend

through the concept of lagging values. Equation (5.3) divides

the factor a by 1-a, then multiplies by the difference between

the single and double exponential smoothing values. This

results in a trend for a single period. Equation (5.4) then

makes an estimate for the present level intercept of the data

using the same concept of equation (5.3). In order to

forecast, equation (5.5) is used starting from the current

level, a, and adding as many times the trend, b, as the number

of periods ahead one wants to forecast. This is, therefore,
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a direct adjustment for the trend factor which may exist in

the data.

As with Brown's method, Holt's two parameter linear

exponential smoothing method estimates and uses the trend in

forecasting. The difference in these two methods is that Holt

introduces a term for the trend (T,-1 ) and an additional

smoothing constant 1. The three equations in Holt's model

are:

E, = aDc - (1 - c) (Ec- I + T._ I ) , (5.6)

T, = P (E, - E,_I) + (I - 1) Tt:_, (5.7)

D*t. u = Et + uTr. (5.8)

Holt uses the difference between two successive

exponential smoothing values, which have been smoothed for

randomness in equation (5.7), to estimate the trend in the

data. Using the smoothing constant, 1, multiplied by this

difference, and (1-P) by the old estimate, we get the

smoothing trend which includes reduced randomness. To compute

the forecast in equation (5.8), the trend is then multiplied

by the number of periods ahead that one desires to forecast

and then the product is added to E, which is the current level

of the data that has been smoothed to eliminate randomness.
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lM I -- MI II l lM

In comparison with Brown's model, Holt's model has the

disadvantage of requiring two parameter specifications (a and

0) whose values need be optimized if the mean squared error is

to be minimized. On the other hand, one has the opportunity

of applying different weights to randomness and trend

depending upon the specific data involved.

Winters' exponential smoothing is an extension of Holt's

linear exponential smoothing. Its applicability in our study

is its inclusion of a seasonality factor.

The estimate of seasonality is given by an index S,, which

fluctuates around the value of 1. The equations in Winters'

method are:

= + ( - )S , (5.9)

E = a + (1 - a) (E,- + T -) , (5.10)

= y (E, -E + (1 - y) T _ , (5.11)

D = (E . uT) StL. u  (5.12)

The form of equation (5.9) is similar to that of other

exponential smoothing equations, i.e., a value is multiplied

37



by a smoothing constant [, and is then added to its previous

estimate multiplied by (1 - 0). Dt/E t is used rather than

either variable independently so as to express the value as an

index rather than in absolute terms. Winters' equations

differ from Holt's in the introduction of the seasonal index

St. Thus, equations (5.10), (5.11) and (5.12) obtain

estimates of the present level of the data, the trend, and the

forecast for some future period (t + u). To remove the

seasonal effects which may exist in the original data Dr,

equation (5.10) has Dt divided by the seasonal index St-L,

where L is the length of seasonality, or number of periods

experienced before returning to a period with similar

characteristics. A forecast is then obtained in equation

(5.12) in a similar manner to that used by Holt. However,

this estimate for the future period (t + u), is multiplied by

the last seasonal index St-L~u, to readjust the forecast for

seasonality. Our Winters FORTRAN algorithm is included in

Appendix B.

The Winters' model is more difficult to optimize because

it has three parameters. Values for the randomness smoothing

constant a, the seasonality smoothing constant [, and the

trend smoothing constant y must be found to minimize the mean

squared error. Makridakis and Wheelwright suggest that the

values for [ and y are usually smaller than a. They suggest

a normal a value ranging from 0.1 to 0.3. Hogan correctly
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recognized instability of an optimal a when viewing the

spectrum of MOS groups. For a single value a, he reluctantly

suggests 0.4 be used. Through our own sensitivity analysis

discussed in the next chapter, we chose to select values for

a of 0.45, 1 of 0.35, and y of 0.10 though we admit that there

is room for future analysis and refinement of these

estimations.

B. HARRISON-STEVENS MULTI-PARAMETER ESTIMATION

P. J. Harrison and C. F. Stevens of Imperial Chemical

Industries, Ltd., describe a method of short-term forecasting

based on the use of Bayesian principles in conjunction with a

multi-state data-generating process (Harrison and Stevens,

1971). The various states correspond to the occurrence of

transient errors and step changes in trend and slope.

1. Basic Model

For the basic model, we define:

d, = posterior attrition rate,
n, = posterior trend value,
b, = posterior slope value,
s, = posterior seasonal factor.

Then the basic model is a generating process defined by:

dt = mtsc + Ct. (C-N(0 ; V,))
mL =mC-1 + bt + Yt (y-N(0 ; V)) (5.13)
b t = bt_1 + 8 (-N(0; V)O

where:
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et = observational noise,
yt = trend perturbation,
bt = slope perturbation,

and the random components e, y, and 6 are assumed to be

independently and normally distributed with zero means and

known, but not necessarily constant, variances V , V,, and V6.

The posterior distribution is used to assess errors in the

forecasts. Also, as is usual in Bayesian procedures, the

posterior values become the prior values for the time step

update.

Harrison has shown that given a generating process of

this type with constant variances, and ignoring the seasonal

effect s,, the optimal least-squares predictor is equivalent

to that of the Holt system described earlier (Harrison, 1967).

In the Harrison-Stevens model, we change notation slightly,

replacing a and B with the smoothing constants A, and A2, these

being functions of the variance ratios; V7/V, and V6/V,.

Normally the parameters A, and A2 determine the

sensitivity of a system. Conflict arises between a sensitive

system which responds quickly to real changes, and an

insensitive system which does not react to noise and transient

errors. One is more likely to overswing while the other is

too slow to catch up with the data. Since we are more likely

to experience transient error than changes in trend or slope,

we err on the side of insensitivity. When large changes

occur, we either accept slow correction to the desired level
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or utilize a method of monitoring forecast errors with manual

adaptivity. The Bayesian multi-state system is capable of

overcoming these difficulties, being adaptive to trend and

slope as well as responsive to transients.

2. The Multi-State Model

In equation (5.13), we see that the generating procec

is characterized by the noise component et which affects only

the current observation. A large et has the appearance of a

large transient error with no effect on the future of the

system. We also have the perturbation terms yt and 6, which

affect the future course of the system. A large Yt causes a

permanent step change to a new level, and a large 6, causes a

change in slope. The multi-state model supposes that there is

not one but a number of possible distributions from which

these values are generated at each observation. Since we have

distinguished four process states; no change, step change,

slope change, and transient, we formalize the multi-state

model as follows:

7% = probability of occurrence of the jth state
(j = 1, 2, 3, 4}

t- N(O ; 1 ())
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which produces the random components e,, y,, and 8, when the

system is in state j at time t. As recommended by Harrison

and Stevens, we define the variances in terms of ratios of the

basic noise V0 , a value of the basic variability of the

process in its normal state. Testing the sensitivity of this

variance law, Harrison-Stevens applied a range of incorrect

values and experienced minimal forecasting impairment when

only a short stabilizing lead interval was provided (one tu

five forecast periods). As amplified in Chapter VI, we could

not verify these findings aiiu instead rely on the variance law

obtained from Misiewicz. The variances are then defined as

follows:

- VO

- R.'y Jvc (5.15)

14 = R 1q

using the parameters defined in Table 3.

Given this type of generating system we can never know

the values of m or b, at any time t. But we can express our

knowledge about m, and b, in terms of a distribution which is

continually modified with each successive attrition rate

observation d , dr+-,
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TABLE 3. STATE PARAMETERS IN THE HARRISON-STEVENS MODEL

State Prob. R, R, R6

NU C1iange 0.900 1 0 0

Step Change 0.003 1 100 0

Slope Change 0.003 1 0 1

Transient 0.094 101 0 0

With the generating process of equation (5.13), the

joint distribution of (m,b) at time (t - 1) is bivariate

normal, as is the posterior distribution at time t.

In developing the joint distribution, we !ct:

e, = d t  -(mt_ + b,_ 1) st, (5.16)

R '' (5 17)

Lr12 i 22J

and:

rv Vlr (5.18)

where:

=l v + 2 v,- + vb't+ t7
Il2 = v + vv ' + V8 (5.19)

= Vbb + V6
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Further:

V =si + V.
s'rii

A, (5.20)

V.

We then have the joint posterior distribution at time t given

by:

m,= m _i +b , + A, e
b,= bt-1 + A.el

= - A, V, (5.21)
vA -A

v'a o t - r12 - A1 A 2 Ve

Vbb, t= r 2 2 - A2 V.

At this point, we introduce the distribution notation

use by Harrison-Stevens to formalize the relationship between

the prior and posterior distributions. In the multi-state

model where we have a mixed prior distribution specified by:

fl

( -l' c-()) E --' N (=-- (5.22)

4=1
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one component of the prior corresponds to each state of the

process, with:

qtj(-) = probability (posterior to d,,) that the
process was in state j at time step (t-l),

4. = state j parameter values at time step (t-l).

We then complete the posterior distribution as:

( 1,bq N I 4d,)) ) (5.23)
.1,5

where J ', is obtained from VC), V (j ) , V7 (j ) , and V6", ) , and

p. - '-: is the state transitional matrix developed by:

p i) - i 1 (5.24)T qcI 7, j p 2 VJ 2T17, V6

A complex mathematical problem develops when an 'N-

component' prior proceeds through this process to become an

'N' posterior. As we continue to generate further, it

becomes N2 , N", etc. To overcome this mathematically correct

yet complex process, the posteriors are condensed to create an

approximate bivariate normal distribution of the same form as

the prior distribution. Using subscripts, we show the

condensed state probability and bivariate values of the trend

and slope:
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j) (1)j

TR -(5 .2 5 )
q--

q i)

and one example from the variance-covariance matrix calculated

from the multivariate values:

Sp 'i,) [v 4j' + ( _ ) 2]

- ql i)(5.26)Vm.1, r =
q J

With this process the more relevant information

corresponding to the current process state is carried forward,

and the posterior is in the proper form for the process to

continue indefinitely.

Finally, our forecast for time t is calculated by:

: q) r' b ] s . (5.27)

Our FORTRAN algorithm is contained in Appendix B.
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VI. VALIDATION PHASE

A. GENERAL

With two alternative estimation techniques, we require a

method of determining their individual effectiveness as well

as their relative effectiveness to the forecasting model. We

employ two Measures of Effectiveness (MOE) to achieve these

results:

* Mean Squared Error (MSE)--an average measure of the
difference between the forecast attrition and the actual
attrition rate after being squared.

0 Mean Absolute Deviation (MAD)--an average measure of the
magnitude difference between the forecast attrition and
the actual attrition rate in absolute terms.

Each MOE is dependant upon the difference between the actual

period attrition rate and the model forecast attrition rate.

To validate the presented estimation techniques, we weighted

the differences between the actual attrition rates and the

forecast attrition rates. Assuming the forecast has

negligible variance, then:

Var (A-F) s Var(A) = Pq
n

where:

A = Actual attrition rate,
F = Forecast attrition rate,
n = Inventory level of the forecasting cell,
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n = Inventory level of the forecasting cell,
p = Probability of attrition, and
q = 1 - p.

Then the normalized Error of Forecast (EOF) is

EOF = (A -F) X n (6.1)

Values for p and q are lacking, but the product 'pq' should

not vary much; certainly not as much as n. We therefore

modify our calculation for EOF as:

EQF = (A-F) xV'- (6.2)

which provides a more stabilizing verification value than the

simple difference. This EOF is the foundation of remaining

validation.

The validation phase encompasses the following objectives:

* Compute values for the constant parameters presented in
both the Harrison-Stevens and the Winters techniques.

* Compare Harrison-Stevens and Winters forecast results.
Design an experiment to compare the performance between
the following four treatments: The Winters Exponential
Smoothing technique with seasonality updates; Winters
technique without using a seasonal factor; Harrison-
Stevens Multi-parameter Estimation technique with seasonal
updates; and Harrison-Stevens technique without using
seasonal factors.

* At each observation period, compute a forecast for the
subsequent four periods. Analyze the forecast
distributions when estimating further into the future.
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Since the data available is used both to establish

parameter criteria and to test the model techniques, a means

of cross-validation is required. Additionally, assuming

possible error in setting initial parameters, some lead time

is required to allow the process to stabilize. Since we are

working with 48 periods, our ad hoc solution is to use the

first eight periods to stabilize the process. The next ten

periods are used to select and tune parameters, and the final

30 periods are used for cross-validation of our forecasting

results.

B. PARAMETER ESTIMATION

1. Winters Parameters

The three constants included in the Winters

Exponential Smoothing Technique are: a, the randomness

smoothing constant; 0, the seasonal smoothing constant; and y,

the trend smoothing constant. Our objective is to select

those constant values which tend to minimizing the difference

between the actual and forecast attrition rates over the wide

range of paygrade/MOS group combinations. Lacking time to

explore the possibilities of an optimization algorithm and

knowing from Hogan's experience that it is unlikely that an

optimal solution would approach a single set of values, we

explore forecasting results through nested DO LOOPS within our

forecasting algorithm. Figures 3 shows a sample output of the

minimum MAD obtained for a given set of constants for a
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particular MOS group and paygrade (MOS group 3; rank of

Major). The low values tend to cluster around the minimum

value. This is consistent for all MOS/paygrade combinations

tested, but unfortunately, not all MOS/paygrade outputs

cluster about the same constant values. It is difficult to

select one set of values, but as in Hogan's experience, we

reluctantly do so, and set a = 0.45, f = 0.35, and y = 0.10

for our cross validation.

2. Harrison-Stevens Parameters

Harrison and Stevens present a number of parameters,

most of which we accept as given. Since we use the

multiplicative seasonality method, the two values of most

concern are V0 , the basic variance law for attrition, and 3,

the seasonality update weighting value.

As previously mentioned, we are unable to confirm the

Harrison-Stevens claim that a minor lead time compensates for

V0 selection error. From Misiewicz, we estimate the true

value of V0 to be approximately 0.01. Through sensitivity

analysis of the first few small MOS groups, we observe MAD

value fluctuations from 3% to 14% for varying values of V0.

With all other values held constant, results are compared for

V0 set equal to 0.0001, 0.001, 0.01, and 0.1. Complicating

matters still, V0 and 0 proved strongly correlated when

repeating the clustering parameter optimization procedures

described above for the Winters parameters. We choose to rely
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on the efforts of Misiewicz to support our single value

estimate for V0 = 0.008. With this approximation, the results

prove most stable with our reluctant but quite believable

single value estimate for 3 = 0.40.

WINTERS VALIDATION OF CONSTANTS USING MAD
EAMPLE USING MAJ(RS IN MOS GROUP 3

FOR ALPHA = 0.2

GAMMA VALUES

BETA C. 0.2 0.3 0.4 0.5 0.6 0.7 0.8
6.1 0.203 0.161 0.141 C.213 0.202 C.327 0.23- 0.263
0.2 0.192 C.1f5 0.143 0.'j5 .180 0.479 0.2C6 0.2Z2
C 2 0.108 0.160 0.155 0.483 0.24 C.555 0.330 0.6:I
04 0.187 0.165 0.191 0.8E: 0.336 0.214 0.237 0.3,7
C.5 0.196 0.196 0.245 1.959 0.286 0.306 0.311 0.271
0.6 0.227 0.248 0.330 1,184 0.310 0.345 0.310 0.902

FOR AL,.A = 0.3

GAMMA VALUES

BETA 0.1 0.2 0.3 0.4 C.5 0.6 C.7 0.8
0.1 0.163 0.141 0.137 0.138 0.157 0.179 0.344 C.3065
0.2 0.163 0.144 0.142 0.176 0.25: 1.076 0.374 0.266
0.3 0.165 0.150 0.176 0.244 0.847 0.296 0.245 0.712
C.4 0.173 0.1E2 0.228 0.394 0.3:0 0.335 0.665 0.257
0.5 0.223 0.229 0.312 0.908 0.255 0.376 0.271 0.315
0.6 C.255 0.309 0.467 0.554 0.361 0.338 0.560 1.551

FOR ALPHA = 0.4

GA.W.A VA'UE

BETA 0.! 0.2 0.3 C.4 0.5 0.F 0.7 0.5
C.. 0.150 0.138 0.137 0.136 0.137 0.142 0.149 0.1 :
0.2 0.154 0.141 0.142 0.150 '60 0.173 0.185 C.19
0.2 0.161 0.155 0.170 0.157 24 0.221 0.272 0.3E2
C 4 0.1?: 0.19' 0.2!7 0.25^ 52. 7.306 0.415 0.5^-
C.5 0.222 2,245 0.293 0.352 L, 416 .482 0.769 0.29E
0.6 C.285 0.339 0.426 0.555 0.717 0.831 0.573 0.873

FOR ALPHA = 0.5

GAMMA VALUES

BETA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 C.E
0.1 0.148 0.138 0.137 0.138 0.141 0.148 0.174 0.17
C.2 0.154 0.145 0.146 0.153 0.162 0.176 0.992 0.i18
0.3 0.167 0.162 0.172 0.164 0.197 0.235 0.212 0.3!3
0.4 0.192 C.197 0.210 0.227 0.249 0.3E6 0.264 0.257
C.5 0.235 0.252 0.275 0.298 0.333 0.308 0.403 0.3PC
C. 0.311 0.346 0.367 0.42E 0.536 0.600 0.575 0.553

FOR ALPHA = 0.6

GAMt6A VALUES

BETA 0.1 0.2 C.3 0.4 C.5 0.6 0.7 0.6
0. 0.149 0.141 0.143 0.148 0.156 0.168 0.209 0.1F-
0.2 0.158 0.153 0.158 0.166 0.178 0.225 0.200 0.255
C.3 0.17, 0.176 0.13 0.125 0.223 0.43K 0.245 0.226
0.4 C.2r5 0.205 0.222 0.24: 0.292 0.247 0.324 0.331
$.5 0.252 0.261 0.279 0.C' 0.423 0.327 0.353 0.394
0.6 0.32i 0.352 0.380 0.433 0.966 0.647 0.723 0.569

ALPHA = 0.4 ETA = 0.' GAMIA = 0.4
ThE MINIhS M.A.- IS: 0.135

Figure 3. Winters Minimum MAD Clusters
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C. TECHNIQUE COMPARISON

In order to obtain some quantitative worth of seasonality,

we compare each estimation technique while using seasonality

factors against the same techniques without the use of

seasonality. Figures 4 and 5 display the measure of

effectiveness for 70 cases (14 MOS groups times five

paygrades). As expected, seasonality improves the forecast

for most MOS/paygrade combinations as measured by the MAD and

MSE. However, the degree of improvement is not as great as

that which is expected, and there exist cases where

nonseasonality outperforms seasonality techniques. Figure 6

displays the comparison when seasonality factors are used

between the Winters and the Harrison-Stevens techniques.

Again, the resulting differences are not as great as expected,

with Harrison-Stevens holding a slight edge.

To measure whether this difference is significant at the

90% confidence level, an Analysis of Variance is performed,

with the results displayed in Figure 7. With the knowledge

obtained from the MOE plots, it is not surprising that ANOVA

concludes that we cannot reject the null hypothesis, i.e., the

techniques cannot be separated statistically.

D. FORECASTS BEYOND THE NEXT PERIOD

The final area of analysis examines forecasts beyond the

next calendar period. Without a seasonality factor, future

52



PLOT OF WINTERS MAD: WITH/WITHOUT SEASONALrTY

MOS GROUPS 1 - 14

-NO SEASONALITY

O SEASONALrY

0 20 40 6
RAKS 1 -5 FOR EACH MOS GROUP

Fgr 4. Plot of Winters MS:WTHWTOU ESOAIY
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PLOT OF HARRISON -STEVENS MAD: WITH/WITHOUT SEASONALITY'
M~OS GROUPS 1 -14

-NO SEASONALITY
....... .... SEASONALIY

0 20 40 60
RAN4KS 1 -5 FOR EACH MOS GROUP

PLOT OF IARRISON -STEVENS MSE: WITH/WITHOUT SEASONALITY
MOS GROUPS 1 -14

NO SEASONAUJTY
SEASONALITY

Li

C0 20 -. 40 co

RANKS 1 -5 FOR EACH MOS GROUP

Figure 5. Plots of Harrison-Stevens MOEs

54



PLOT OF WINTERS AND HARRISON -SI EVENS MAD

MOS GROUPS 1 - 14

WINTERS
........ HARRiCN-Si EVENS

C, L

C; 20406
RANKS 1 5 FOR EACH MOS GROUJP

PLOT OF WINTERS AND HARRISON -ST1EVENS MS-,

MOS GROUPS 1- 14

WINTERS
...... HARRISON-SIEVENS

00 20 4I
RANKS 1 5 FOR EACH MCS GROUP

Figure 6. Plots of Winters vs. flarrison Stevens MOEs
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ANOVA TABLE: BETWEEN ALI FOUR TREATMENTS

SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.002965157 3 0.0009883857 0.10402369
WITHIN 2.622426057 276 0.0095015437
TOTAL 2.625391214 279

ANOVA TABLE: BETWEEN WINTERS TREATMENTS
SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.000531796 1 0.000531797 0.055200235
WITHIN 1.329485192 138 0.009633951
TOTAL 1.330016988 139

ANOVA TABLE: BETWEEN HARRISON-STEVENS TREATMENTS
SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.001P95421 1 0.001895421 0.202304747
WITHIN 1.292940865 138 0.009369137
TOTAL 1.294836286 139

ANOVA TABLE: BETWEEN THE TWO SEASONALITY TREATMENTS
SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.002469978 1 0.0024699780 0.257012677
WITHIN 1.326226277 138 0.0096103353
TOTAL 1.328696255 139

Figure 7. ANOVA Between Differing Forecast Techniques

projections are linear with trend-dependant slope.

Multiplicative seasonality allows us to shed linearity in

favor of a weighted forecast which is dependant upon the

seasonal factor.

Winters and Harrison-Stevens are each capable of

forecasting as far into the future as the user desires. It is

natural to assume that the further into the future one

forecasts, the less reliable the results become. We test the

Winters and Harrison-Stevens models using 30 periods of data.

For each period t, a forecast is made for the following four

periods, t+l, t+2, t+3, and t+4. Figures 8 displays a partial

output of the Harrison-Stevens EOFs obtained for a particular
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MOS group/paygrade combination. The following example

provides a visualization of improving forecast in the nearer

periods. Compare the EOFs when forecasting for the 11th

period. In period t = 7, the t+4 EOF represents the forecast

error for period 11. In period t = 8, the t+3 EOF now

represents period 11. In period t = 9, the EOF is t+2, and in

period t = 10, the EOF is in t+1. The result for this example

shows that as the forecast period draws nearer, the EOF

decreases from 0.462, to -0.097, to 0.047, to 0.002. Using

the average of the EOF absolute values as the MOE, Figure 9

presents the results expected. For each seasonal technique,

there is an improvement as we forecast periods which are

nearer to the present period.

SAMPLE EOF PROJECTIONS OUT FOUR PERIODS

t t+1 t+2 t+3 t+4

5 0.06354 -0.02900 0.89280 -0.26160
6 0.00779 0.54802 -0.50548 0.11972
7 0.31060 0.23659 0.60275 0.46215
8 -0.24404 0.24630 -0.09650 0.56540
9 0.26845 0.04728 0.44275 -0.01953

10 0.00171 0.03610 -0.20234 0.08523
11 0.14652 0.02766 0.15643 -0.19487
12 0.07762 0.35258 0.07406 0.27510
13 0.03807 -0.31529 -0.12837 -0.27556
14 -0.20124 -0.11518 -0.27620 -0.44428
15 -0.02032 -0.25272 -0.40429 0.30848
16 -0.22514 -0.12923 0.23481 0.06135
17 -0.16356 -0.09883 -0.29731 -0.30556
18 0.08582 -0.12510 -0.16466 -0.15071
19 -0.19320 -0.22819 -0.240a5 0.04632
20 -0.05956 0.24759 0.41768 0.13648
21 0.00524 0.08994 -0.12723 -0.1015
22 0.06678 -0.25627 -0.27049 -0.167414

Figure 8. Sample EOF Projected Four Periods
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Average Absolute EOF Forecasting Out Four Periods

Technique t+l t+2 t+3 t+4

Winters 0.1633 0.1894 0.2142 0.2373
Harrison-Stevens 0.1382 0.1471 0.1601 0.1621

Figure 9. Improved Forecasts in Nearer Periods

A comparative analysis between the Winters and Harrison-

Stevens seasonality techniques is made for periods t+2, t+3,

and t+4. Figures 10 through 12 graphically display the

increasing superiority of the Harrison-Stevens technique when

projecting further into the future. To verify this

observation statistically, a oneway ANOVA test is made. The

results shown in figure 13 indicate statistical significance

between the two techiques for all three projections at the 90%

confidence level. Additionally, we observe a strengthening of

this significance as we project further out.

E. ERROR OF FORECAST ANALYSIS

An analysis of the EOF values is conducted to identify the

presence of a distribution. Our theory is based upon the

assumption that the error in forecasting is normally

distributed. For future application of the techniques

presented in this research, the normality assumption

previously discussed is verified using a quantile plot of the

Harrison-Stevens EOF data against the normal distribution.

With a simple square root transformation (reattaching the
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WINTU- S VE HARRSN-STEWVNS MAD: FORECASII ,,- T4 2

MCS GROIJS 1 - 14

WITEUS D/.

Ii I

RA0KS 1 -5 FR EACH MOS GfOIP

Figure 10. Harrison-Stevens vs. Winters EOF: period t+2

signs after transforming the EOF magnitudes), we obtain an

excellent fit to the normal distribution.
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WINTERS VS HARRSON -STEVENS MAD; FORECASTING T+3

?MOS GROUPS 1 -14

I WINTERS MAD

0 2C 40
RANKS 1 5 FOR EACH MOS GROUP

Figure 11. Iarrison-Stevens vs Winters EOF: period t43

WINTERS VS HARRISON -STEVENS MAD: FORECASTING T+4

MOS GROUPS 1 -14

WiNTERS ~
.......................... HARiCSON-STEVENS

1) 2 4C,60

RAVI(S 1 -5 FOR EACH MOS GROUP

Figure 12. Hiarrison-Stevens vs Winters EOF: period t44
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ANOVA TABLE: WINTERS VS HARRISON-STEVENS (T + 2)

SOURCE SUM OF SQR DF MEAN SQP. F
BETWEEN 0.062544721 1 0.062544721 4.371881748
WITHIN 1.974246338 138 0.014306133
TOTAL 2.036791059 139

ANOVA TABLE: WINTERS VS HARRISON-STEVENS (T + 3)

SOURCE SUM OF SQR DF MEAN SQR F
BETWEEN 0.102343967 1 0.102343967 5.185222873
WITHIN 2.723791788 138 0.019737622
TOTAL 2.826135755 139

ANOVA TABLE: WINTERS VS HARRISON-STEVENS (T + 4)

SOURCE SLM OF SQR DF MEAN SQR F
BETWEEN 0.198180206 1 0.198180206 9.027351471
WIT'IN 3.029556181 138 0.02]953306
T(±AL 3.227736387 139

Figure 13. ANOVA Comparison in Future Forecasts
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VII. CONCLUSION

Majors Randy Larsen and John Misiewicz made significant

strides in applying aggregation and shrinkage techniques for

officer attrition rate estimations. While achieving

estimation stability for the small cell problem, the results

were based upon annual data and failed to consider seasonality

as a factor. Our data allows us to successfully introduce the

seasonality factor on a quarterly basis with flexibility of

conversion to any cycle desired.

While we are grateful of Corporal Dean Hupp, MIIS,

Headquarters, U.S. Marine Corps, and his efforts in preparing

a usable data base, his resources were limited and many

shortcomings exist which require sensitive manipulation. The

available modified data base proves usabie for model

validation but would not serve well for actual forecasting.

DSAI expects to have a quality data base by October 1990, and

we recommend that it be used to verify our parameter

estimations and modelling conclusions.

In general, the data base supports the use of seasonality

factors for each MOS group/paygrade combination. How to

incorporate seasonality into a model is open to debate. We

recommend that the multiplicative approach be used and that a

weighted update of the values be done at each period in the

process.
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The Winters Exponential Smoothing approach for estimating

attrition rates is introduced to establish a baseline for the

Harrison-Stevens approach. Our expectation of the Winters

method was that it would present good forecasting results, but

that it would not be competitive with the Harrison-Stevens

technique. Using either MSE or MAD, forecasting is improved

when seasonality is used. Further, the Harrison-Stevens

approach yields better forecasts than the Winters method.

While differences in the one-period forecasts are not

statistically significant, we find this significance

strengthened with each subsequent period estimated. Each

method is capable of forecasting as far into the future as

desired, and when forecasting out two or more periods,

Harrison-Stevens is statistically superior to the Winters

method. In addition, Harrison-Stevens provides a posterior

distribution rather than a point estimate. It is recommended

that the Harrison-Stevens Seasonal Multi-State Bayesian

approach be used as the base model in the Marine Corps Officer

Rate Generator.

Finally, we recommend that additional sensitivity analysis

be conducted on remaining parameters used in the Harrison-

Stevens model when a more sound data base is available.
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APPENDIX A

A. SAMPLE DATA ENTRY

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

7806 19 04 13 0 2 1 0

Column

1 - 2 Calendar Year

3 - 4 Ending Month of Observed Quarter

6 - 7 Years Commissioned Service (YCS)

9 - 10 Paygrade (01 = 2nd Lt, 02 = 1st Lt, etc.)

12 - 15 Primary MOS (Actual USMC Codes)

17 Service Component (Regular Commission = 1 or
Reserve Commission = 2)

19 - 22 Number of Attritions this Quarter

24 - 27 Ending Inventory this Quarter
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B. SAMPLE SOURCE DATA BASE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ?2 33

7 56 2 3 1 0 1 8 9 4 4 9 6 3 1 0 3

Column

1 - 4 Primary MOS

6 Paygrade

8 - 9 YCS

11 Service Component

12 - 14 Attrition for 1st Quarter 1978

14 - 18 Inventory for ist Quarter 1978

19 - 21 Attrition for 2nd Quarter 1978

22 - 25 Inventory for 2nd Quarter 1978

26 - 28 Attrition for 3rd Quarter 1978

29 - 32 Inventory for 3rd Quarter 1978

47 - 49 Attrition for 2nd Quarter 1979

50 - 53 Inventory for 2nd Quarter 1979

114-117 Inventory for 4th Quarter 1989
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APPENDIX B

A. FORTRAN PROGRAM: MCFIND

SUBROUTINE MCFIND(MOS, SG,LG,MG)

C - -- FIND LOCATION OF MATCHING MOS IN GROUP TABLE. RETURN GROUP NO
PARAMETER (NMS=80, NG=14, NLG-6, NMG='
INTEGER*2 MOSGR(2,NMS), LGRP(NG), MGRP(NLG)
INTEGER SG,LG,MG
COMMON /MOSTBL/ MOSGR, LGRP, MGRP
DO 13 Ni!,NMS

IF(MOSGR(1,I) .EQ. MOS) THEN
SG=MOSGR(2 , )
LG=LGRP (SC)
MG=MGRP(LC)
RETURN

ENDIF
10 CONTINUE

SG=O
LG=O
MG=O

C*** WRITE(6,*) ****MOS NOT FOUND IN GROUP TABLE:',MOS
EIND

C
SUBROUTINE MOSGET(IX, MOS,IG,LG,MC)
PARAMETER (NMS=80, NG=14, NLG=6, NMG=4)
INTEGER*2 MOSGR(2,NMS), LGRP(NG), MGRP(NLG)
COMMON /MOSTBL/ MOSGR, LGRP, MGRP
MOS=MOSGR(1 ,IX)
IG=MOSGR(2 ,IX)
LG=LGRP( IC)
MG=MGRP(LG)
END

C
BLOCK DATA
PARAMETER (NMS=80, NG=14, NLG=6, NMG=4)
INTEGER*2 MOSGR(2,NMS), LGRP(NG), MGRP(NLG)
COMMON /MOSTBL/ MOSGR, LGRP, MGRP
DATA MOSGR/302,1, 802,2, 1302,2, 1802,2, 1803,2,
x 108,3, 202,3, 2502,3, 2602,3,
* 3415,4, 4002.4, 4302,4, 5803,4,
* 402,5, 3002,5, 3060,5, 3502,5, 6002.5.
* 7204,6, 7208,6, 7210,6, 7320,6,
*7501.7, 7511,7, 7522.7. 75142,7, 7543,7, 7545,7, 7'576,7.,
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* 7521,8, 7523,8,
* 7556,9, 7557,9, 7562,9, 7564,9, 7565,9, 7566,9, 7587,9,
* 7508,10, 7509,10, 7563,10, 7581,10, 7583,10, 7584,10,
* 7585,10, 7586,10, 7588,10,
* 101,11, 201,11, 301,11, 401,11, 801,11, 1301,11, 1801,11,
* 2501,11, 2601,11, 3001,11, 3401,11, 3501,11, 4001,11, 4301,11,
* 4401,11, 5801,11, 6001,11, 7201,11, 7301,11, 9901,11,
* 7580,12, 7597,12, 7598,12, 7599,12,
* 7500,13, 7510,13, 7520,13, 7540,13, 7550,13, 7560,13, 7575,13,
* 4402,14 /

C
DATA LGRP/1,1, 2,2,2,2, 3,3, 4,4, 5,5,5, 6 /
DATA MGRP/1, 1, 2, 2, 3, 4 /
END

B. FORTRAN PROGRAM: MCMATX

C --- PROGRAM TO CREATE 3-DIM MATRICES MOS X PG X QUARTER
C --- JUNE 1990 LCU MARINE CORPS
C --- PROVIDES SGI/SGL FOR ALL DESIGNATED GROUP OVER 48 PERIODS
C --- PARAMETER MXY MUST BE UPDATED TO REFLECT EXACT NO. YEARS OF DATA

PARAMETER (MXY=48, NSG=14, NLG=6, NMG=4, NPG=5, NQ=4)
INTEGER MOS,PG, YCS, SVC, SG,LG,MG, GROUP
INTEGER INV(MXY), LOSS(MXY)
REAL SGI(48,NPG)
REAL SGL(48,NPG)

DO 3 GROUP = 1,NSG

DO 6 I = 1,MXY
DO 7 J = 1,NPG

SGL(I,J) = 0
SGI(I,J) = 0

7 CONTINUE
6 CONTIN-.

C ---
NR 0
nR=MXY/4
DO 10 1=1,999999

5 READ(l,100,END=999) PG,MOS,YCS,SVC,INV,LOSS
NR=NR+1
CALL MCFIND(MOS, SG,LG,MG)
IF(SG.NE.GROUP) GO TO 5

C ---
C --- SUMMARIZE FOR EACH QUARTER
C M,Y3=!-Y - 3
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DO 20 JQI11XVY
SGI(J,PGy-SGI(J,P4) +~ INV(J)
SCL(J,PG)=-SGL(J,PG) + LOSS(J)

20 CONTINUE
10 CONTINUE

C ---
999 CONTINUE

DO 40 J"1,NPG
DO 50 K=1,48

C****** IF(SGI(IK,J).FQ 0.) SGI(K,J)=i
50 CONTINUE
40 CONTINUE

C ---
C - -- W~RITE MATRICES OUT AS 2-DIM MATRICES ONE FOR EACH QTR

WRITE((1O-*GROUP) ,202) GROUP
WRITE((30+GROUP),202) GROUP
DO 200 K-=1,48
WRITE((1O+GROUP),201) (SGL(K,J),J=1,NPG)
WRITE((3OiGROU'),201) (SGI(K,J),J=1,NPG)

200 CONTINUE
WRITE(6,*) '** RECORD READ"-',NR

201 FORMA.T ( 5F 10. 0)
202 FORMAT(//,3X,'DATA FOR GROUP ',13,/)
100 FORMAT(Il ,14, 12,11,9614)

REWIND( 1)
3 CONTJINUE

ENI)

C. APL PROGRAM: OIJTLY

V OUZ'LY X;ORDER;MED;IQ
ElORDER+X~l3J
E2 ED (O?DEI (X)*2J+ORDER[(tX)f2)+1J)*2C 3] I10R+OZDER[(E p 00.751-ORDER (pX)+1]

Kt RIMINI( (lJ )I(X-Q~ED))-(1Qi~x3)E5 W1IERE-(SE EwO ) ipSEE
10 ORDER

[7] I I
[8 SEE

10] WHERE
v

D. FORTRAN PROGRAM: MCFX

C - -- PROGRAM T IX DATA B:.SE MCC90C BY CHANGI NG CERTA IN VAITUS
C - -- TO THlL .VLEiAAL (}: 4- (QTlS bEELCI AND AFTER,
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C ---
C --- JULY 1990 LCU MARINE CORPS
C --- PARAMETER MXY MUST BE UPDATED TO REFLECT EXACT NO. QTRS OF DATA
C ---

PARAMETER (MXY=48, NSG=14, NPG=5, NQF=4, SGSIZE=NSG*FYY*NPG)

INTEGER MOS,PG, YCS, SVC, SC
INTEGER INV(MXY), LOSS(MXY)

INTEGER QT(NPG,NQF)
DATA QT/45,45,12,8,14, 0,0,14,12,45, 0,0,45,14,0,

* 0,0,0,45,0 /
C
C --- FIX INDIVIDUAL RECORDS ON UNAGGREGATED DATA BASE

CALL FIXREC(QT,INV,LOSS,NPG,NSG,NQF, MXY)
END

C

SUBROUTINE FIXREC(QT,INV,LOSS,NPG,NSGNQF, KXY)
C --- FIX EACH RECORD FROM SOURCE DATA BASE

INTEGER MOS,PG, YCS, SVC, SG
INTEGER INV(MXY), LOSS(MXY), QT(NPG,NQF)
REWIND(I)

DO 10 1=1,999999

5 READ(1,100,END=999) PG,MOS,YCS,SVC,INV,LOSS
IF(PG.LT.1 .OR. PG.GT.5) GO TO 10
CALL MCFIND(MOS, SG,LG,MG)

IF(SG.LE.0) GO TO 10
C --- FIX TIME SERIES

DO 20 K=1,NQF

IQ=QT(PG,K)
IF(IQ.GT.O) THEN

I1=IQ-4

12=IQ+4
IF(I2.GT.MXY) 12=IQ+3

INV(IQ)= .5*(IN-(11)+INV(I2)) + .5
LOSS(IQ)= .5*(LOSS(II)+LOSS(I2)) + .5

ENDIF

20 CONTINUE
WRITE(2,100) PG,MOS,YCS,SVC,IN\',LOSS

10 CONTINTE
C ---

999 CONTINUE
100 FORMAT(I11,I4,12,I1,9614)

END

E. FORTRAN PROGRAM: MC90

C --- PROGRAM TO ANALYZE MARINE CORPS PERSONNEL INVENTORY
C --- AND ATTRITION DATA.
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C -- SEP 1987 REVISED FOR NEW DATA BASE FORMAT BY L. URIBE
C - -- MAY 1989 REVISED FOR AGGREGATION ALGORITHMS L. URIBE
C - -- MAY 1990 REVISED FOR NEW DATA FORMAT L. URIBE
C - -- PARAMETER MXY MUST BE UPDATED TO REFLECT EXACT NO. OF QTRS
C ---

PARAMETER (MXX=200, MXY=48, MXR=2000)

C ---
INTEGER SYCS(31), NYCS
INTEGER SYCSG(31) ,SYCSL(31) ,SYGSM(31) ,NYCSG,NYCSL,NYCSM
INTEGER SMOS(80), NMOS
INTEGER SVCMP(5), NSC
INTEGER SGRD
INTEGER*2 VYC(50)

C --
REAL INV(MXX,MXY),Y(MXX,MXY), SINV(MXX,MXY),SY(MXX,MxY)
INTEGER DATA(MXY)
REAL XTB(MXY) ,VXTB(MXX) ,XEB(MXX) ,A(MXX)
INTEGER*2 PTIRTBL(MXX, 2) ,INDX(MXX), MKG(MXX), RETTBL(MXR. 5)
INTEGER*2 PTBL(MXX' , 3), BKTBL(MXX.,3)
REAL AVINV(MXX), RETINV(MXR)
EQUIVALENCE (RETTBL. INV,)
DATA MKG/MXX*O/

C
DO 1 I=1,MXX
DO 2 J=l,MXY
SINV(I ,J)=O

SY(I ,J)=O
INV(I ,J)=0
Y(I ,J)=0

2 CONTINUE
1 CONTINUE

C
C INITIAL VALUE FOR AGGREGATION ESTIMATION PERCENTAGE

AGGPCT=0. 9
ICYCLE=l

C
CALL GETPAR(AIMIN,NO,NMOS,SMOS ,NYGS,SYCS ,SGRD,

* NSC,SVCMP, IGR,LG,MG)
C - -- MAJOR GROUP IS MG, LARGE GROUP LG, GROUP ICR, YCS BLOCK IY

WRITE(6,*) '
W RITE(6,*) '- GR,LG,MG=',IGR,LG,MG
WRITE(6,*) '

C - -- READ EVAL TABLE. SELECT ONLY RECS PASSING SELECT CRITERIA

CALL READET(RETTBL,RETINV,,MXR,MXY,NRET,SCRD,NSC.SVTCMP,MG)
5 RC=0

IGX=IGR
LGX= 0
MGX=O'
NYC SC =1
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SYGSG(1)=SYGS(1)
NYGSL~ 1
SYCSL(1)=SYS (1-)
NYC S M= 1
SYGSM(1)=SYGS(1)
NGTOT-O
NC=NCEVAL(AIMIN, IGX, LGX ,MGX ,NYCSG, SYCSGRETTEL, RETIN , NRET, MXR,

AGGPGT, IGR,LG)
C --- DO WHILE NGTOT<NO & RC=O (EXPAND AS LONG AS NO NOT MET)

10 IF(NC .GE. NO) THEN
WRITE(6,*) '$GG EVAL NC,SYCSG=',NC,(SYGSG(II),IIN1,NYCSG)
GO TO 60

ENDIF
IF(NYGSG.EQ.1) THEN

GALL GETVYG(SYGS(1),LG,NTYE,VYG)
WRITE(6,*) '~=VYG=',(VYG(I),I=1,NYE)

ENDIF
GALL EXPAND(NYCS.'-qC,SYCSG,VYG,NYE,IGX,LGX,MGX,LG,MG ,RC)'
IF(IGX .EQ. 0) GO TO 20
NG=NGEVAL(AIMIN, IGX, LGX ,MGX, NYGSG, SYGSG ,RETTBL, RETINV NRET , mX,

* AGGPCT,IGR,LG,
GO TO 10

C
20 NGTOT=NG

WRITE(6,*) '$$G EVAL NG,SYCSG=',NGTOT,(SYCSG(II),II=1,NYGSG)
G --- EXPAND TO LARGE MOS GROUP

WRITE(6,*) '
W-RITE(6,*) '=== EXPANDING BY LARGE GROUP:',LGX
NC=NCEVAL(AIMIN,IGX,LGX,MGX,NTYGSL,SYCSL,RETTBL,RETINV- ,NRET,MXR-P

AGGPCT,IGR,LG)
30 IF((NCTOT+NG) .GE. NO) THEN

WRITE(6,*)'$LL EVAL NC,SYCSL=' ,(NCTOT+NC),(SYGSL(II),II=1,NYCSL-)
GO TO 60

ENDIF
IF(NYCSL.EQ.1) GALL GETVYG(SYCS(1),LG,N-YE,%YC)
GALL EXPAND(NYGSL, SYCSL,VYC ,NYE, IGX,LGX,MGX,LG ,MG ,RC)
IF(LGX .EQ. 0) GO TO 40
NG=NGEVAL(AIMIN, IGX ,LGX MGX , NYSL, SYCSL, RETTBL, RETINX1 ,INRET, XR,

-k AGGPCT,IGR,LG)
GO TO 30

C
40 NCTOT=NGTOT+NC

WRITE(6,*) '$$L EVAL NG,SYGSL=',NCTOT,(SYGSL(II),II=1,N-YCSL)
G --- EXPAND TO MAJOR MOS GROUP

VRITE(6,*,!) '
WJRITE(6,*) '==EXPANDING BY MAJOR GROUP:'.MGX
NG=NGEVAL(AIMIN, IGX ,LGXMGXNYCSM, SYGSM, RETTBL, RETINV 'NRET ,NX-R,

AGGPCT,IGR,LG)
50 IF((NCTOT+NG) .GE. NO .OR. RC .NE. 0) THEN

VRITE(6,*) '$1M EVALT NC, SYCSM ' ,(NC+!NCT0T~ (SYCSM(II ) ,I 1.N Y vCS-)
GO TO 60
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ENDIF
IF(N-YCSM.EQ.1) GALL GETVYC(SYGS(1),LG,NYE,VY-,C)
CALL EXPAND(NYGSM,SYGSM,VYC,NYE, IGX,L GX,MGX,LG,MG ,RC)
NG=NCEVAL(AIMIN, IGX ,LGX ,MGX ,NYGSM, SYCSI, RETTBL, RETINV,NRET MLR,

* AGGPCT,IGR,LG)
GO TO 50

C
C - -- EXPANSION FINISHED

60 IF(RC .NE. 0) THEN
WRITE(5,*)'*** REQUIRED NO MAY NOT BE MET: NO,NC=',NO,(NCiNCTOT)

ENDIF
C

WRITE(5,*) 'ESTIMATED NUMBER OF CELLS =',NG+NGTOT
70 WRITE(5,*)

WRITE(5,*) 'ENTER 1 TO CALL READER, 0 TO CHANGE EXPANSION'
READ(5,*) NPICK1
IF(NPIGK1 .EQ. 1) THEN
GO TO 80

ELSE
WRITE(5,*) 'AGGPCT IS CURRENTLY =' , AGGPCT
WRITE(5,*) ?ENTER NEW VALUE FOR AGGPCT'
READ(5,*) AGGPCT
GO TO 5

ENDIF
80 WRITE(5,*) 'CALLING READER'

C
CALL GETMOS(SMOS,NMOS,MGX,LGX,MG,LG,IGR)

C
GALL READER(INV,Y,MXX,MXY,NMOS,NYCSG,NYGSL,NYGSM,NSC,
"SMOS,SYCSG,SYCSL,SYCSM,SGRD,SVCMP,NRC,PTRTBL,LGX,MGX,

" IGR,LG,NPT,PTBL,SINW,,SY)

C
GALL AGGREG(INV,Y,MXX,MXY,SMOS,SYGSG,

NRC, NRCOLD,PTRTBL, INDX,AVINV,AIMIN,MKG)
C

W RITE(5,*) 'NUMBER OF CELLS =' ,NRC
90 WRITE(5,*)

WRITE(5,*) 'ENTER 1 TO CONTINUE, 0 TO CHANCE EXPANSION,'
READ(5,*) NPICK2
IF(NPIGK2 .EQ. 1) THEN
GO TO 100

ELSE
WRITE(5,*) 'AGGPCT IS CURRENTLY =', AGGPCT
WRITE(5,*) 'ENTER NEW VALUE FOR AGGPCT'
READ(5,*) AGGPCT
ICYCLE=ICYCLE+l
GO TO 5

ENDIF
C

100 CONTINUE
VRITE(6,201)'EXPANSIO.N INFOR.NATION:
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WRITE(6,203)'ACTUAL NO. OF CELLS USED- ',NRC

WRITE(6,202)'MOS GROUP P',IGR,' YCS''S USED=',
(SYCSG(I) ,I=1,N YCSC)

IF(LCX CT. 0) THEN
WRITE(6,204)'LARCE MOS GROUP #',LC,' YCS''S USED=',

(SYCSL(I) ,I=1,NYCSL)
ELSE IF(MGX GCT. 0) THEN
WRITE(6,204)'IARGE MOS GROUP 1t',LC,' YCS''S USED-',

* (SYCSL(I),I=1,NYCSL)
tRITE(6,204)'MAJOR MOS GROUP #J',MG.' YCS''S USED=',

* (SYCSM(I),I=1,NYCSM)
ENDIF

STOP
C
C**O* CALL MC87BZ(INV ,Y ,NRC ,MXY ,XTB ,VXTB ,XEB ,A,M)LX,MXY)
C

CALL BKDOON(PTBL,NPT, PTRTBL,NRCOLD, INDX,MKG ,MXX,!IXY,
SINV,SY,INV,Y,BKTBL,NBK)

C
201 FORMAT(/1X,A)
202 FORMAT(1X,A,12 ,A/1X,18(I3))
203 FORMAT(lX,A,12)
204+ FORMAT(lX,A,I1,A/1X, 18(13))

END

SUBROUTINE EXPAND(NNCSX,SYCSX,VYC,NYE,IGX,LX,MGX,L,MIG,RC)
C - -- EXPAND YCS IF FEAS, ELSE EXP MOS TO LC/MG & BACKTRACK YCS

INTECER SYCSX(31), NYCSX
INTEGER*2 VYC(NYE)

C --- FIND POSITION OF ORIGINALLY REQUESTED SYCS(1)
IYQO
DO 10 I=I,NYE
IF(SYCSX(1) EQ. VYC(I)) IY=I

10 CONTINUE
IF(IY.EQ.O) GO TO 30

V - -- FIND NEAREST NON-ZERO YCS TO USE FOR EXPANSION
DO 20 I=1,NYE
J =I Y -I

IF(J.CE.1) THEN
IF(VYC(J).GT.O) GO TO 50

ENDIF
J=1Y41
IF(I.LE.NYE) THEN

IF(VYC(J).GT.O) GO TO 50
ENDI F

20 CONTINUE
3' CONTINUE

IRITEW*6 .------ YCS EXPANSION FINISHEP: IY-' ly,
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C - -- NO MORE YCS EXPANSION POSSIBLE. SEE IF MOS ENYE. FEASIBLL
IF(IGX.GT.O) THEN

C - -- EXPAND FROM GROUPS TO LARGE GROUP LGX. BACK YCS
IGX=O
LGX=LG

ELSE IF(LCX.GT.O) THEN
C - -- EXPAND FROM LARGE GROUP LGX TO MAJOR GROUP MGX. BACK YCS

LGX=O
MGX=MG

ELSE

RC= I
ENDIF
RETURN

C
C - -- EXPAND WITH YCS IN POSITION J & CLEAR VYC(J)

50 CONTIN-UE
NYCSX=NYCSXil
SYCSX(N-YCSX)=VYC (J)
V'YC(J) )=0

C

FUNCTION NCEVAL(AIMINIGX,LGX,MGX,NYCSX,SYCSX,RETTBL,RETIllv~,
*NRET,MXR,AGGPCT,IUR,LG)

C COMPUTE EST. NO. CELLS TO OBTAIN WITH CURRENT SELECTION:
INTEGER SYCSX(31) ,NYCSX
INTECER*2 LGRP(14) ,MGRP(6)
INTEGER*2 RETTBL(MIXR, 5)
REAL RETINV(MKR)

LOGICAL ACCEPT
NC EVAL=O
IF(IGX.EO.0 AND. LG)Y.EQ.0 AND. MGX.EQ.O) RETURN
TA I NV0 .0
DO 100 1=1,NPRET

C - -- SCREEN ON YCS

DO0 10 J -",NYC S:-
IF(RETiBL(I,2) EQ. SYCSX(J)) GO TO 15

1 C CONTINUE
GO TO 100

C - -- SCREEN ON MOS BY GRODUP, LG/14G DEPENDS ON0 GLGM:
15 CONTINU'E

MOS=RETTBL( I1)

ICGP=RETTBL '(1,3)
LGP=RETTBL(I .4)
MGP-RETTBL(I '5)

ACCEPT=. FALSE.
IF(Mc;> CT. 0) THE-%*

I F(MC2P F. ? A',!) LOGP. .L)ACFTTRE

ELSEF
I F(LC2G C ( TE
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IF( LCP .EQ. LGX IND TOP IE IR) A CCEPT.F TPU-E.

ELSE
IF(IGP .EQ. lOX) ACCEPT=.TR' E.

ENDIF

C -- ACCEPTED

IF(ACCEPT) THEN,

IF(RETIN-V(T) CE. AINI1N) THEN

IF(t4CX.CT.O) VRTTrE(6,-*)'NEL.OCPLCMP=,
* NCEVAL,MOS,RETTBL-(T.2) ,IOP,LCP,MOP)

NCE'VAL-=CEVAL± 1
ELSE

EINDIF
ENDIPF

100 CONTINUE
C
C - -- FINA L ESTINUJTE IS NCEV.AL

TF(ATMTN.CT.O) -NCEVAL<CE%2'AL, + ACCPCT*TATNJAII

VRIT El(6* NCEV AL,TATNY.,TCX,LCX,MOX=' ,NCE-,z-,L,TATN ,, LCSI.N§2i

SUBROU'TINE CETVYC(SYC7S. LCO, NYVYC)
PP.AMETER 2=,NE=1,NYEC h)
INTEC-ER,-2 YCSB(NlYE NYB, NYRO . VYiC(NYE, LOU>'(
I N T EGER 5105S

DkLCEX/4,4,4,2,I .3
1<AYCSE, "2,3., 6. 8. 9, 1,1 2,314i16781

1,213,4,5, -,,Ol,21 T 1 1,7.1,9-'
6, . 20.211,22,23,24,25,12-' 0

,.1*9 202122,3.,2 10, 26, 1-

4, , 26~ . 20 .22, 2 22 2,) ,
- UT:UICATES LO:*ST DIMNINI 0

VS L

DO 3'; P7



END
c

C

SUBROUTINE READET(RETTBL,RETINV,MXR,MXY,NRET,SGRD, NSC,SVCmp, MG)

INTEGER INVENT(100), LEAV(100)

C -- READ TABLE WITH ALL EXISTING COMBINATIONS FOR SELECTION CRITERIA

C -- ACCEPT RECS WITH MATCHING PG,MG,SVC. ACCEPT ALL YCS

INTEGER SVCMP(5), NSC, SVC

INTEGER SCRD, PG

INTEGER MOS,YCS

REAL RETINV(MXR), Al

INTEGER*2 RETTBL(t4XR, 5)

NRET=O

DO 10 I=1,999999
READ(1,1O1,END=999) PC,MOS,YCS,SVC, (INVENT(1K),K=1,MxY)

(LEAV(Y) K=i M:Y)

IF(PC.LT.SGRD) CO TO 10
IF(PC.CT.SCRD) CO TO 999
CALL MCFIND(MOS, IGR,LC,MCX)

IF(MCX .NE. MC) GO TO 10

DO 20 J=1,NSC
IF(SVC .EQ. SVCrlP(J)) THEN

NRET=NRETs-
IF(NRET.CT.t4XR) STOP 555

RETTBL(NRET, 1)=MOS

RETTBL(NRET, 2)==YCS

RETTBL(NRET, 3)=IGK
RETTBL(NRET , 4>LG

RETTBL(N'RET, 5)=MG

RETINXT;%(NRET)=AV7G(INX7 ENT, ",)

VPL.TE(6,104) NRET,MOS,YCS,IGR,LC,MG,RETIN7 (NRE:T)
GO TO 10

C ONTINE

I' FRMAT( I1 1 4, 12, 11 2(j01,4)
FO R T 6I 1 , P. 2

DCI F, 1 1)
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SUBROUTINE GETPAR(A1MIN,NO,NIOS ,SM'OS,NY-CSSYCS ,SGCRD,
NSC,SVCMP, IGR,LG,MG)

C - -- GET SELECTION CRITLRIA FROM USER AND VALIDATE

INTEGER SYCS(31), NYCS
INTEGER SMOS(80), NMOS
INTEGER SVCMP(5), NSC

INTEGER SCRD
WRITE(5,*) ' ENTER THRESHOLD MIN. FOR AVERAGE INV ENTORY'
RE-AD(5,*) AIMIN
lhRITE(5,*) 'ENTER THRESHOLD MIN. FOR NUMBER OF CELLS'
READ(5,*) NO
WRITE(5,*) 'THRESHOLDS TO USE AIMIN, NO=' ,AIMIN,N)

C
WRITE(5,*) 'ENTER MOS (ONLY 1 ACCEPTED)'
NMO 5 1
READ(5,*) SMOS(l)

TW'RITE(6,*) ' MOS SELECTED:', SMOS(1)

CALL MCFIND(SMOS(1), ICR,LG,MC)
WRITE(6,*) ' GROUP TO USE:', ICR

IF(ICR.EQ.O) THEN
T 'ITE(5,*) '**** ERROR - IN"VALID MOS SELECTED:' SMOS(l)
STOP

ENDI F

VZRITE(5,*) ' ENTER YCS (ONLY 1 ACCEPTED)'
NYC 5 1
READ(5,*) SYCS(l)
VRITE(6,*) 'YCS SELECTED:', SYCS(1)

WPITE(5,I-') 'ENTER GRADE'
REA-D(5,*) SCED
WRITE(6.*) 'GRADE SELECTED', SCRD

WRTE5~)'ENTER NO. OF SWf-. COMPS & ARRA ,Y (1-3, 4=1±', 5 1ALL)'
READ(5,*) INSC, (SVCMP(I), 1=1,NS,-)

-- EXPAN4D 4 TO 1,2 AND 5 TO 1,2,3
D~l 10 I=1,NSC

IF(SVCMP(I) .E0.4 . '.'CP1
NSC-SY*C"I 1'(1) -2

DO 15 J=1 ,NSC
SVCMP(J ) J

I CONTINUE

~I TP> I 6. ' SERY, ICE COM",PONENT'S S ELECTED' ,(SVCM'P:' 1 - ,S7

VP I TE,"6, 1 1 'T E ST C A SE I N PlT PARAM ETERS:
WRITE ( T h '! ,'INTORY THRPE Sn .01 C I .1 TI

TIHRE FSHOjlDj NO.) OCET ; '
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V TITE(6,1O3) 'MOS= ',SMOS(l),,-%YCS= ' ,SYCS(1) ,'GRADE- ',SCRO

VRITE(6,104) 'SERVICE COM4PONENTS= ' ,(SVCMP(I) ,I=1,NSC)
C
101 FORMAT(1X,A)
102 FORMAT(IX,A,F4.1,7X,A,12)
103 FOR-MAT(1X,A,15,2(5X,A, 12))
104 FORIMAT(1X,A,15(13))

END
C

C
SUBROUTINE GETMOS(SMOS,NMOS, MGX,LGX, MG,LG, IG)

C - -- BUILD SMOS ARRAY BASED UPON EXPANSION
INTEGER SMOS(8O)
NMOS=O
DO 10 I=1,999999
GALL MOSGET(I, MOS,IGP,LGP,MGP)
IF(MOS.LE.O) RETURN
IF(MCX.GT.O .AND. MGP.EQ.MC O.

LGX.GT.O .AND. LGP.EQ.LG .OR.
-- IGP.EQ.IG ) THEN

NMOS =NMOS+l
SMOS(NMOS)=MOS

ENDIF
10 CONTINUE

END
C

C
SUBROUTINE READER(I Y,,YMX, XY, N:4OS, NYCS, NYSLNYCSM.N S
*SMOS ,SYCSG,SYCSL,SYCSM,SGRD,SVCMP,NRCPTRTBLLGXMC.--

* ICR,LG, NPT,T'TBL, SINY ,SY)
REAL INV(4XX,MXIY),Y(M4XX,MXY), SINV(MYX,MXY),SY' M)X MXY>-
INTEGER INVENT(100), LEAV(100)
INTEGER*2 PTRTBL(M.VY, 2), PTBL(MX:,3)
INTEGER SYCSG(*), SYCSL(*), SYCSM(*)
INTEGER SMOS(*), NMOS
INTEGER SVCMP(*), NSC
INTEGE? SGRD
INTEGER YCS ,PG,MOS,SVC

C
REWIND 1
DO 6 1 1,M>9:

DO 5 J=1,Y
IN :(IJ)=0.0

Y(I ,J)=O.0
SINV(I,J)-0 fl
S (I ,J)=0.0

3 ONTINUE
( CONTINUE
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ICR=O
NRC=O
NPT=O
ICNT=O

C
1 READ(1,101,END=999) PG,MOS,YCS,SVC, (INVENT(I),I=1,MXY).
-k (LEAV(I) ,I=1,MYY)

ICR=ICR+l

C - -- CHECK IF RECORD MEETS SELECTION CRITERIA. OTHERWISE REJECT.

C

IF(PG UL. SGRD) GO TO 1

IF(PG .GT. SGRD) GO TO 999

C
GALL MCFIND(MOS, IGP,LGP,MGP)

IF(IGP.EQ.O) GO TO 1

C

IY= 0
IF(t4GX .GT. 0) THEN

IF(LGP .EQ. LG) THEN
CALL CKTBL(YCS,NYCSL,SYCSL,IY)

ELSE IF(MGP .EQ. MGX) THEN
CALL CKTBL(YCSN-YCSM, SYCSM, IY)

EINDIF

ELSE IF(LCX .GT. 0) THEN
IF(IGP .EQ, ICR) THEN

CALL CKTBL(YCS,NYCSC,SYCSG,IY)
ELSE IF(LGF .EQ, LGX) THEN

CALL CKTBL(YCS,NYCSL,SYCSL,IY)

ENDIF

ELSE

IF(1GP EQ. IGR) CALL CKTBL(YCS,NYCSC,SYCSG,IY)

ENDIF
IF(IY.EQ.O) GO TO 1

C

CALL CKTEL(MOSNMOSSMOSIM)
IF(IM.EQ.O) THEN

VRITE(6,*) '*** ERROR IN 1105 SCREENING ***',MOS

WRITE(6,*) 'NMOS,SMOS ',NMOS,(SMOS(I),1-l,NMIOS)

GO TO 1

ENDI F
C

CALL CKTFL(SVC ,NSC, SVCMP,IS)

IF(IS.EQ.O) CO To 1

C

C - -- RECORD ACCEPTED - INSTALL IN IN%,Y ,SINV%,SY, PTRTBL AND ETEL

ICNT=IICNT+1
I v= I S
,MIN-V =CINV.(PTR.TBL, M:x,NRC, IM,IY,-99)
MV=GINV(PTBL, KYX,NPT,IMIY,IW)

CALT INS INV(PTRTBL, MXX .M:*:YNRC, MINV, IM, IY, - 99, 1INV. I NVENTl
CALL INSINV"(PTEL. Y.X.NTM7 IM. 1Y, ,SNTNVT
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GALL INSY(MXX,MXY,MIN-V,Y,LEAV)
GALL INSY(MXXMXY ,MV, SY,LEAV)

GO TO 1
G

999 GONTINU'E
UTRITE(6,*)
WRITE(6,*) 'TOTAL REGORDS READ ',C

WRITE(6,*) 'TOTAL INV. MOS/YCS GOMBINATIONS=' ,NRC
WRITE(6,*) 'TOTAL INVJ. MOS/YGS/IW GOMBIN;ATIONS=' ,NPT
WRITE(6,*) 'TOTAL REGORDS ACGEPTED ',IT

C - -- TERMINATE IF NO DATA GOLLEGTED
IF(NRG .EQ. 0) THEN

WRITE(6,*) '**** NO DATA MEETS SELECTION REOS'
STOP

ENDIF
C

WRITE(6,*) ' **PTRTBL TABLE**'

DO 200 I=1,NRC
WRITE(6,131) I,(PTRTBL(I,J),J=l,2)

200 GONTINUE
WRITE(6,*) ' **PTTBL TABLE *'

WRITE(6,132) (I,(PTBL(I,J),J=1,3),(SIN-V(I,J),J=1, 10) ,I=1,NPT)
C
101 FOR-MAT(I1 ,14,I2,Il,20014)
121 FORMAT(A8,1316)
122 FORMAT(A8,7I6, 5X, 1216)
131 FORMAT(14, 216)
132 FOR.MAT(14, 316, 1OF7.2)

SUBROUTINE GKTBL(SRC,NTBL,TBL, IX)
INTEGER TBL(NTBL), SRC
DO 10 I=l.NTBL
IF(SRC .EQ. TBL(I)) THE',

IX= I
RETURN

ENDI F
10 GONTIN-UE

I X=0
END

FUNCTION CINV(PTBL, M2K(,NPT, IMIYIW)
C--- FIND LOCATION OF INVJENTORY ENTRY FOR, MOSYCSSVC- COMBINATIONS

C - -- 3RD DIMENSITN CHECKED ONLY IN CASE IW >0
INTECER*2 PTBL(MX:, *
DO 10 I=1,NPT

IF(PTBL(T, 1) EQ. kM .AN;D.
-* PTBL (1I 2 Er). I-' THEN-

IF ,UT.0 OP. ( .T. 0 AN,,). PTr,,. 3). Q. . T,':--
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GI NV=I

RETURN
ENDIF

ENDIF
10 CONTINUE

GI NV=O

END
C

SUBROUTINE INSINV(PT,MXX,MXY,N,K,IM,IY, IW,INV,DATA)
C - -- ACCUM INTO KTH ENTRY. INSTALL IN POINTER TABLE IF NOT PRESENT

REAL INV(MXX, MXY)

INTEGER*2 PT(MXX, *

INTEGER DATA(MXY)
IF(K .EQ. 0) THEN

C --- ADD NEW ENTRY
N=N+l
IF(N CT. M>DX) THEN

WRITE(6,*) '*** ERROR - TOO MANY INV. COMBINATIONS' ,N
STOP

ENDIF
K=.N

PT(K, 1)=IM
PT(K, 2)=IY

IF(IW.GT.O) PT(K, 3)=IW
END IF
DO 130 IT=1,MXY
INV(K,IT)=INV(K,IT) +i DATA(IT)

130 CONTINUE

END

C
SUBROUTINE INSY(MXX,MXY,K,Y,DATA)

C --- ACCUt4M INTO KTH ENTRY FOR LOSS

REAL Y(MXX, ?4XY)
INTEGER DATA(MXY)
IF(K .EQ. 0) RETURN
DO 10 IT=l,M):Y
Y(K,IT)=Y(1K,IT) + DATA(IT)

10 CONTINUE
END

C~

SUBROUTINE AGCREG(INt, Y ,MYX,MXY,SMOS,S-YCSG,
NRC,NRCOLD,PTRTBL,INDX,AVINV, AIMIN !IK)

C - -- COMP. AVERAGE INV. & SORT
REAL INV(MXX, MXYr, Y(M2LX, Mt4XY) ,AVINV(!MXY )
INTEGERM- PTRTBL(MXX, 2), INDX(IXXY) MIKC(M)UD')
INTEGER SYCSG(*), SMOS(K)
REAL*8 TllNW.,TY

- -- RESET MVG (NECESSARY WHEN CYCLING THRU AGMPT VALTEqS
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DO 10 I=1,MXX

MKG(I)=O
10 CONTINUE

TINV=O

TY=O
DO 100 I=l,NRC

C --- FIX INV. ENTRIES LOWER THAN CORRESP. LOSSES & COMP. AVG INV.

AI=O
DO 201 J=1,MXY
IF(INV(I,J).LT.Y(I,J)) INV(I,J)=Y(I,J)

AI=AI+INV(I ,J)
TINV=TINV+INV(I ,J)

TY= TY+ Y(I,J)
201 CONTINUE

AVINV (I )=AI/bLXY
INDX(I)=I

100 CONTINUE

WRITE(6,*) '---TOTAL INV,Y=',TINV,TY
C
C --- SORT ASCENDING BY AVG INVENTORY

CALL SORT2 (AVINV, INDX,NRC)
C

NSI=0
C --- DISPLAY TABLE IN SORT SEQUENCE

CALL DSPTBL(INV,Y,AVINV, PTRTBL,INDX,AIMIN,NRC, MKG,MXX,MXY.

SYCSG,SMOS )
C

DO 200 K=NRC,I,-I
IF(AVINV(K) .GE. AIMIN) THEN

C --- MARK AS MEMBER OF SET SO
MKG (K)=32767

ELSE
C --- INITIAL COUNT OF MEMBERS OF SET Si

NSI=K
GO TO 202

ENDIF

200 CONTINUE
202 CONTINUE

C --- DO AGGREGATIONS WITHIN SET SI UNTIL NO MORE POSSIBLE (KF GE 0)
KF=- 1

C --- DO WHILE KF<0
300 IF(KF.GF.O) GO TO 310

CALL AGG1(AVINV,INDX, MKG,NS1,IN',Y,MXX,MXY,AIMIN,KF)

GO TO 300
310 CONTINUE

C --- DISPLAY TABLE AFTER 1ST AGGREGATION
-,'=' CALL DSPTBL(INV,Y,AVINV,PTRTBL, INDX.AIMINNRC,MKG,:'KX,MLXY,
- *SYCSG,SMOS )

IF(NSI.EQ.NRC) THEN

WRITE(6,*) '***** SET SO EMPTY. NO CELLS ABOVE THRESHOLD'

STOP
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ENDIF
C --- DO AGGREGATIONS FROM SET Si INTO SET SO UNTIL NO MORE POSSIBLE

KF= 1
C --- DO WHILE KF'>0

320 IF(KF.LE.0) GO TO 3310
GALL AGG2(AVINV%,INDX,MKG,NS1,NRC,INV,Y,MXX,M XY, V.F)
GO TO 320

330 CONTIN UE
C - -- DISPLAY TABLE AFTER 2ND AGGREGATION'

GALL DSPTBL(INV,Y,AVINY-.,PTRTBL,INDX,AIMIN;,NRC,MKG-,MXX,MXY----
-k SYCSG,SMoS)

C --- MOVE VALUES GE ATMIN TO BEGINNING OF ARRAYIS
GALL CMPRS(INV,Y,MXX,MXY,NRG,NRCOLD,AIMIN,AVIN7 )

C --- DISPLAY TABLE AFTER MOVING VALUES.
DO 400 K=1,NRC

WRITE(6,122)K,AVINV(K), (IN V(K,J),J=l,12 )
WRITE(6,123) (Y(K,J),J=1,12 )

400 CONTINUE
122 FORMAT(/15,14X,F8.3, 6X, 12F7.2)
123 FORMAT( 33X, 12F7.2)

END
C********

SUBROUTINE AG -i (AVINV,INDX,MKG,NS1,INV-,Y,M.Y:,MNY,AIMI;,K'F)
C - -- DO ONE PASS OF AGGREGATION

REAL IN-,(MXX, MXY), Y(MtDx, MXY), AVIN V(M2LX)
INTEGER*2 INDX(MLXX) ,MYG(MYXX)
KF= 0
CI =0
DO 10 I=N;S1,l.-l
IF(.MYG(I).EQ.0) THEN,

IF(KF.EQ.0) THE';
C --- THIS W ILL BE THE COLLECTING CE'L

KF= I
CI=AVIN'V(I )

ELSE
I F(C I AVI NV (l).LT.AIMIN-) THE!

-- ACCUM4. WITH CELL VF TE IPORPITY SEIT TE. PINEEY
CI-CI+AVI%%( 1)
MYKG(I)=-KF

ELSE
C --- FIND SMALLEST CELL TO ADD

CALL AGAAIUlYCICIIFMU
EN DI F
IF(CI.GE.AIMIN) THEN'

C -- MAKE THIS AGGREGATION PERMAl'-NENT AND E,=1

AV I NV (FKF )=CI
CALLAGIBIDXKCFN,,YiX

MV/G (KF) = 3 27 6 7

RETURN,

63



ENDIF
ENDIF

ENDIF
10 CONTINUE

C
IF(KF.EQ.0) RETURN

C --- CLEAR TEMPORARY POINTERS LEFT. THIS WAS AN UNSUCCESSFUL AGGRE0.

DO 20 I=1,NSI

IF(MKG(I).LT.O) MKG(I)=O
20 CONTINUE

END
C

SUBROUTINE AGG1A(AVINV,MKG,ILAST,CI,AIMIN,KF,MXX)
C --- FIND SMALLEST CELL TO ADD AND SET TEMPORARY POINTER

REAL AVINV(MXX)

INTEGER*2 MKG(MXX)
DO 10 I=1,ILAST
IF(MKG(I).EQ.O) THEN
IF(CI+AVINV(I) .GE. AIMIN) THEN

CI=CI+AVINV(I)

MKC(I)=-KF
RETURN

ENDIF
ENDIF

10 CONTINUE

WRITE(6,*) '*** ERROR IN AGGIA. NO VALUE FOUND ***'

STOP
END

C

SUBROUTINE AGG1B(INDX,MKG.KF,INV, Y,MXY,MX X)

C --- MAKE AGGREGATION PERMANENT
REAL INV(MXX, MXY), Y(MXX, MXY)
INTECER*2 INDX(MiX) ,MKG(MXLX)
K=INDX(KF)

DO 10 I=1,KF-1
IF(MKC(1) .LT. 0) THEN

IF(MKG(I).NE.-KF) STOP 777
MKG( I )=KF

L=INDX( I)
DO 20 J=1,MXY

INV(K,J)=INV(K,J)+INX'(L, J)

Y(K,J)= Y(K,J)+ Y(L,J)

20 CONTINUE
ENDIF

10 CONTINUE

END
C

SUBROUTINE ACG2(AVINV,INDX,MKG,NS1,NRC,INV,Y,MX,MXY, KF)
C --- DO ONE PASS OF AGGREGATION FROM SET Si TO SET SO
C --- ON EACH PASS ONE ELEMENT OF SI IS TAKEN & ADDED TO SMALLEST OF S0

REAL INV(MXX, MXY), Y(NMXX, M)XY), AVINV(M-KX)

84



INTEGER*2- INDX(MXX) ,MKG(MXX)

KF=O
C- -- FIND ELEMENT OF Si (ONLY THOSE WITH POINTER tKG(I)=O)

DO 10 I=1,N51

IF(MKG(I).EQ.O) THEN

KF I
GO TO 12

EN D IF
10 CONTINUE
12 CONTINUE

C --- IF KF STILL 0 THEN NO MORE ELEMENTS IN Si LEFT

IF(KF.EQ.0) RETURN'l

C
C - -- FIND SMALLEST ELEMENT OF SO AND ADD TO IT. ONLY W:ITH l-t'G()=3l2-,-

ISM=NRC
SMALL=AVINV(ISM)

DO 20 I=1, NRC
IF(MHKG(I).EQ.32767) THEN7'

I F(AVI N-V( 1 .LT .SMALL) T HEF'

ISY,=I

SMALL=AV'IN% (I)

ENDIF

20G CONTIN-UE
C -- JOIN ELEMENT YE TO ELEMENT IS.M-

AVI7(IM)AVIV(IM)+ AVINW'KF
MikC(vF)=ISm

DO 3'- J -1 MY

C

SUBROUTINE CMPRS(INW. Y,MXX,MXY,NRCNRCOLD.A:MIN;,ANN,7'
REAL INV(MX.M:KY), Y(ML'LX, MX-Y) VI7 M2K

C-- - COMPRESS INV ,Y IN P LACL MOVE ALL ROW S CE AIMIN TO T(Y
NRCOLD=N;RC
NRC=O
DO 10 I=1,NRCOLD

AI=CAI'T I NV, I ,MXLK.%I:Y

IF(AI .GE. AIMIN) THEN
C -- - TRANSFER ACTIVE CELL I --- -> NRC

AVINV (NR =A1
DO 20 J=1,1 M-Y

INlv(NRC J ),-V JJ)
Y(NRC,-J)= Y(I,J)

CONTINUE



10 CONTINUE
END

C

FUNCTION CAINV(INV, I,MXX,MXY)
REAL INV(MXX, MXY)

C --- COMPUTE AVERAGE INVENTORY FOR ROW I
CAT NV=O
DO 10 J=1,MXY

CAINV=CAINTV+IN V(1, J)
10 CONTINUE

CAINV=CAINV/HXY

END
C********

SUBROUTINE DSPTBL(INV ,Y,AVINV,PTRTBL,INDX,AIMIN,NRC,YC-,.XX ,MXY,
SYCSG,SMOS)

C --- DISPLAY TABLE IN SORT SEQUENCE
REAL INV (MXY, MXY) , Y(MXX, MXY) , AVINV(M:;X)
INTEGER*2 PTRTBL(MXX, 2), INDX(MXX),MC(MXX)
INTEGER SYGSG(*)
INTEGER SMOS(*)
INTEGER IATT(2)
CHARACTER*1 STI

WRITE(6 ,121)
WRITE (6, *) 'INV. THRESHOLD MIN. VALUE=' ,II

C
WJRITE(6,*) ' INDX AVG MK~c INVENTORY/LOSSES'
DO 200 K=1,NRC
STI=''

I=INDX(K)

AI=-AVINV(LK)
IF(Al .LT. AIMIN) STI='$'
IATT(1)=SMOS(PTRTBL(I .1))
IATT(2)=SYGSG(PTRTBL(I ,2))
WRTITE(6,122)K,I,AI,t4KG(K),STI,(INV(I,J),J=1,1O ),(IATT(J).J=1,2).

PTRTBL(I,1),PTRTBL(I,2)
'WRITE(6,123) (Y(I,J)4J=1,1O

200 CONTINUE

121 FORMAT(/'
1?2 FORMAT(/2I5,F8.3,1V.lX,A?, 10127.2, 5X, 613)
123 FORIMAT( 30X, lOF7.2)

END
C **-k************

SUBROUTINE SORT2(Y, INDX, N)
C---INPLACE SORT USING; SHELL ALGORITHM

C -- SORTS ON Y AN D DOES SAME REORDERING ON I NDEXES ID
REAL Y(N,),TEMP

INTEGER GAP

INTEGER*2 INDX(N), ITEYP
LOGICAL EXCH



GAP- (N12)
5 IF (.NOT.(GAPNE.O)) GO TO 500

10 CONTINUE
EXCH=.TRUE.
KNGAP

DO 200 I=1,K
KK=I+GAP
IF(.NOT.(Y(I).CT.Y(KK,))) GO TO 100

TEMP=Y( I)
Y( I)='(K.K)
Y(KK)=TEMP
ITEMP=INDX(l)
INDX(I )=INDX(KK)
INDX(KK)=ITEMP
EXCH=. FALSE.

100; CONTINUE

C CONTINUE
IF (.NOT.(EXCH-)) GO TO 10

GAP= (GAP/2)

GO TO 5

50CONTINE
RETURN
EN D

SUBROUTINE BKDON(PTBL,NPT,PTRTBL,NR,INDX,MKG,MXX,MXY,
*SINYV,SY,INV,Y,BKTBL,NBK)

C -- BREAKDOWN AGGREGATED VALUES BY THE 3RD DIMENSION SVG/CS

REAL INV(M4XX,MXY),Y(MYX,4XY). SINV(MXX,t4XY),SY(t4xx,tHXY)

INTEGER*2 PTRTBL(MXX, 2), INDX(MLx>) , MKG(MXX)
INTEGER*2 PTBL(MYIX 3), BKTBL(CMXX,3)

REAL*8 TINV,TY
,NBK=O

C - -- TRAVTERSE MKG ARRAtY AND BUILD BKTEL
DO 10 I=1,NRC
IF(M.KG(I) .NE.32767) THEN

ICELL=M',S (1L)
ELSE

ICELL=J
ENDIF
IX=INDX( I)

IM=PTRTBL( IX, 1)

IY=PTRTBL( IX,2)

CALL BLDBK(ICEL"L,IM,IYPTBL,NPT,ML-X,BKTBL,NBIV)

10 CONTINUE
C --- DISPL.MY BKTBL PRIOR TO SORTING

VARITE(6,101) (1, (BKTBL,(I ,J) ,J=1 .3), 1=1 ,NBIK)

CALL SORT 3 (BKTB L, NBK , MX
VjRITE(6,101) (I,(BlETBL(I,J),J=1,3), I=1,NBiK)

C - -- S UMMAR I ZE S I NV, SY' INTO IN-V,Y FOR MATCHING ENTRIES IN BETL.

CALL SUMBK(BKTB!,,NBK,MY2 :. SIIN, S Y, INX'Y, MXY)
VPITE(6, 102') (I, (INV(I .1),,J=i .12 ) (PIKTBL(I ,J) ,,J=1 C I-N' Jl'
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IWRTITE(6 ,1020) (I ( Y(lI4) ,J=1,12 ) ,(BKTIBL(I ,J) ,J=1 2),ld O
101 FORMAT(14, 316)
102 FOR.MAT(14, 12F7.2,10X,214)

END

SUBROUTINE BLDBK(ICELL IMI\',PTRL,NPT W\X,' EWTBL,NBKV)
INTEGER*2 PTBL(MXXU, 3), BR' TBL(Mt4XX3)

C - -- RECORD ALL ENTRIES IN PTBL WITH MATCHING- IM,IY IN BKTEL
DO 10 I=1,NPT
IF(PTBL(I,1).EQ.IM AND. PTBL,(I.2).EQ.IY) THL>,

C - -- INSTALL WITH CELL ID, IW & POINTER

NBY=NBK+l
BKTBL(NBK, l)=ICELL
BKTBL(NBK, 2)=PTBL(I ,3)

BIKTBL(NBK, 3)=I
ENDIF

10~ CONTINUE
END

C

SUBROUTINE SORT3(1,N ,M--
C -- INPIACE SORT USING SHELL ALGORITHM ***-

C --- SORTS ON 1ST 2 COLS. OF T & DOES SAME REORDERING ON 3RD CCLU'M.:
INTECER*2 T(M]X-X,3), ITEMP
INTEGER CAP
LOGICAL EXCH

C

GAP=(N,/2)
5 IF (CAP.EQO) CO TO 500

10 CONTINUF
EXCHi-. FALSE,.
K=N- GAP
DO 200 I=Il,K
KK= I+GA P
IF(T(I,l).CT.T(VK,1) .01R.

(T( ,1).E.TKKi) AND. T(I ,.G.T.T(Kl-2)) T,;"
IT1=T(I .1)
IT2=T(1,I
IT3=T(1I 3)
T (I , 1)=T (KK, 1)

T(I ,2)=T(K,,2o)

T (KK, 1)IT 1

T(KY, 2)=1T2
T (Ki 3 ) =IT 3
EXfH= . TRUE.

ENDI F
CO0'T I NlE

IF (EXCH) GO TO 10
GAP=((CAPI/2

CO TO 5

CO CON'T IN1f
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RETURN
END

C
SUBROUTINE SUtBK(BKTBL,NBK,M2LX ,SINU-.-SY4Xr',,YJ!:xyi,

C --- CREATE AGGREGATED ARRAYS INV,Y FROM CELL & 3RD DIN. lNi. IN BK:
REAL N(MXM:),(X.X) S.'M:,9Y
INTECER*2 BKTBL(MLZX, 3)
REAL*S TINVTY

12=-l
TINV=O
TY= 0
DO 10 1=1,NBIK
IF(BIKTBL(1,1.NE.Ii .OR. BKTBL,2).NE.12) TnEN

c CHANCE OF CELL, 1W IDENTIFIERS
IP=IPi I
I 1=BKTBLQI 1
12=BKTBL(I,2)

DO 15 J=1,ALY

INV(IP,J).-O
Y (I P J)=0

i~. CONTINUE
BKTBL(IP, 1>=TI
BKTBL(IF ,2)=12

ENDIF
C - -- ACCUMULATE

13=BKTBL(1 ,3)
DO 20 J=1,MXY

Y(IP.j)= Y(IPlJ)+ SY(I3w.)
TINT=TINV+SINV(I3,J)

TY= TV+ SY(I3,j)
2n CONTINUE

in CONTNUL

NBI'77-I
WRITE(6,*) '=== TOTAL IN.',Y AFTER BREAKDOWN-',TINVTY,
ED

F. FORTRAN PROGRAM: WSEAS

PROGRAM WSEAS

WINTERS THREE PARAMETER FURECASTING MODE:.

VARIABLES USED

N - NMBEPOF SASON



TM!t'Y = PERIODS OF AVAILABLE DATA
ALPHA= SMOOTHING CONSTANT
BETA = SMOOTHING CONSTANT
GAMMIA= SMOOTHING CONSTANT

Do = CURRENT ATTRITION IN PERIOD T

DF() = FORECAST ATTRITION 1N PERIOD T
EOF(= TRANSFORMED ERROR OF FORECAST
MAD()= MEAN ABSOLUTE DEVIATION On FOPLCAST

Input Initialization

INTEGER N, TMAX

PARAMETER (N = 4, TMAZ = 48)
/*48=Qtrs on Tape*/

INTEGER I, K, L, M, KK, AL, BET, CAM
REAL ALPHA, BETA, GAM ., INDEX( - 3: TMA:) . SMOOTH(O'Tk)

+ TREND(:TNA., (0: TT". . . LOS(TMAX), DINX'(5 , DLUS,.
+ A(N), F(N), EOF(N), D(TM-O). DF(TMA' ) , 4). MAD(4), MSE(.,

// Initialize values smoothing constants /
ALPHA = 0.45

BETA = 0.35
GA1MtA = 0.10

* ,.' DO LOOP to Run Validation on each Rank of Current NOS Group Al

DO 1 K = 1,5

/ Bootstrap INDEX and TREND to initiate Seasonalitv flow /
DO 5 I = 5,8

INDEX(I) = 1.00

5 CONTINUE
TREND(8) = 0.01
DO 6 I = 1,4
MAD(I) = 0.0
MSE(1) = 0.0

6 CONTINUE

/' Read Data; Must have min INV() = 1: Computc Attrition R ;&
DO 10 1 = 1,TMA-X

READ (11,101) (DLOS(J), J=l,5)
READ (13,101) (DINV(J), J 1,5)
LOS(I) = DLOS(K,)
I-'( I) DINV(KK)
IF (INV(I) .LT. 1.0) INV(I) 1.0
D(1) = LOS(I) / INV(I)
IF (D(I) .GE. 1.0) D(l) = (LOS(I)+I) / (INV(I)+2)

10 CONTINUE
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REWIND (11)
REWIND (13)

101 FORMA-'T (5FI0.0)

W/Xinters Forecast Computations /7
SMOOTH(8) D (Q)
DO 15 1 = 9,TMkit 2

SMOOTH(I) = (ALPHA * D(1) / INDEX(.4)) + (1-ALPH.,..
+ (SMOOTH(I-1) + TREND(I-1))

TREN"DI) = GAMY.-! * (SMOOTH(I) - SMOOT,(,1-1)) 4 (-AM
TkEND( I-1)

INDEX (I ) = (BETA * D(I) / SMOOTH(I)) + (I-BET') INDEX( 1,-,)
INDEX(I) = INDEX(I - 1)
DF(I+1) = (SMOOTII(I) + TREND(I)) * INDEX(I-2,)

7'Compute EOF and Sum' the MIAD 7
9) AN.(.LE. 38)) THEN

F(l) =DF(1+1)

A(1 Th (1+1)
DO 20 M=2,N

DF(I+MI, = (SMOOTH(I) + M TREND(I)) INDEXYI'T+-N:
F(M') DF(I-+M11

2C CONTINU,_E
DO 25 M = 1,4

I F (F (M') .CE. I1 0000) F(M 0. ,9 9
1F (F(M) .LT. 0.0001) F(M) =0.0001

EOF(M,) = (A(M ) -F(MI)) A- (INV(I±M,)>K-'*5
MAD(M) = MAD(MI) + ABS(EOF(M)/3),
MSE(M) = MSE(MI) + ((EOF(M)**2)/30)

2 CONTINUE

EN DI F
17" CONTINUE

1VRITE(14,125) (A() ~,
125 FORMAT (2X, 4(F2. .6))

126 FORMAT ( 2 X Z!2. 6)

1 C ON TI NU i

G. FORTRAN PROGRAM: HSSEAS

PROGPANl HSSE;l.S
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HARRISON STEVENS: SHORT TEEY FORECASTING MODEL
* *** MULTIPLICATIVE SEASONALITY ON CONTINUATION **,

* VARIABLES USED
* N = NUMBER OF STATES = 4

PI(J) = PROB OF STATE J; J = 1,2,...,N
RE( = RATIO PARA-METER ON OBSERVATIONAL NOISE *
RG() RATIO PARAMETER ON TREND PERTERBATIO. *
RD( = RATIO PARAMETER ON SLOPE PERTERBATION
VC = VARIANCE LAW*

- Do = CURRENT CiNTINUATION RATE FOR PERIOD T
* VCE = VARIANCE IN OBSERVATIONAL NOISE (CUR-RENT)
* VD = VARIANCE IN SLOPE PERTURBATION *
"- VG = VARIANCE IN TREND PERTURBATION

MC = CURRENT TREND VALUE

BC = CURRENT SLOPE VALUE
VCMIM CURRENT COV MATRIX ELEMENT (1, 1)
VCMB = CURRENT COV MATRIX ELEMENT (1,2) AND (2.1)*
VCBB = CURRENT COV MATRIX ELEMENT (2,2)
So = SEASONAL VALUES
OTR PRESENT SEASON
Q.) = UPDATED STATE PROBABILITY

' Rl()= SUM OF VAR/COV MATRIX ELEMENT (1,I)
w R12()= SUM OF VAR/COV MATRIX ELEMENT (1,2,, (2,)*

R22()= SUM OF VAR/COV MTRIX ELEMENT (1,1)
VE() = EXPECTED OBSERVATIONAL NOISE

Mo = EXPECTED TREND VALUE
B() = EXPECTED SLOPE VALUE
A1() = SMOOTHING CONSTANT

- A2 () = SMOOTHING CONSTANT
VMM)= NEXT COV MATRIX ELEMENT (1,1)
VMB()= NEXT COV MATRIX ELE.ENT (1,2) AND 021

* VBB(= NEXT COV MATRIX ELEMENT (2,2)
* DF() = FORECAST CONTINUATION -%TE-

EOF = ERROR OF FORECAST (TRANSFORMED)
- LtD = MEAN ABSOLUTE DEVIATION OF FORECAST

Input Initialization

INTEGER N, TMAX
PARAMETER (N = 4, TMAX - 48)

/*48=Qtrs on Tape*/

INTEGER I. J, T, QTR, REPL-i, KK, ,EY
REAL*8 RE(N), RG(N), RD(N), PI(N), D(TM-AX), LOS(TMA ) ,

+ S(4), INV(TMAX ), VCE(N), VG(N), VD(N), MC(N), BC(N). VCM
+ VCMB(N), VCBB(N), Q(N), ET(N), CNST, Rll(N.N) RV v( -N-V
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" VM24(N,N), VMB(N,N), VBB(N,N), P(N,N), EH(TMAX), DF(T:.I.
" A(N), F(N), EOF(N), DENOM, SOLD(N), BETA, DLOS(5), DINV)J

Vo = .001

BETA = .35

5 CALL FXCMS('FILEDEF 10 DISK VARIABLE DATA A')

// Read in Harrison Stevens Parameters /
DO 10 J=l,N

READ(10,*) PI(J), RE(J), RC(J), RD(J)

10 CONTINUE

/, Loop To eerform. Forecast for each of 5 Ranks in this SOc Group /,
DO 1 KK=l.5

,// Read in Data from GRP* HAT Files; Do Not Let i1NV() = 0 //
DO 8 I = l,T TNX\

READ (11,201) (DLOS(J), J=l,5)
READ (13,201) (DINV(J), J=1,5)

LOS(I) = DLOS(KK)
T ,W' ) = DIN'V(KY')

IF (INV(I) .LT. 1.0) INV(I) = 1 0

8 CONTINUE

201 FOR{L.T (5F10.O)
"REWIND(10)
REVIND(1)

REWIND(13)

7/ Compute Continuation Rates; Do not allow D') - 0 //
DO 11 I = 1,TMAY

D(1) = (INV(i)-LOS(I)) / INV(I)

IF (D(I) .LT. .00001) D(I) = (IN-V(I)-LOS(I)+I)/(INX,(I 2)
11 CONTINUE

DO 12 I = 1,4
HAD(I) = 0.0

MSE(I) = 0.0

12 CONTINUE
T = 3

// Compute Initial Seaso-nal Values based upon Continuation /,
DENOM = 1

DO 14 K=9,12
DENOM = DENOM- * D(K)

14 CONTINUE

DO 15 K=1,/h
S(K) = (D(K+8)) / (DENOM**.25)

15 CONTINUE
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7/ Flag a Conditional //
DO 20 J=1,N

IF (RE(N) + RG(N) + RD(N) + 0.0001 .LT. RE(J) + RC(J) +

+ RD(J)) THEN

WRITE(*,*) 'Error Statement re: Parameters'

GOTO 1000
ENDIF

/ Define Variances in terms of Ratios of the Basic No se \C I,'

VCE(J) = RE(J) * VO
VG(J) = RG(J) * V0

VD(J) = RD(J) * VO

7/ Inirialize Values for the Condensed Parameters I'

MC(J) = D(J) / S( J)
BC(J) = 0.0
VC,4M(J) = 0.0

VCMB(J) = 0.0

VCBB(J) = 0.0
Q(J) = PI(J)

20 CONTINUE

// Start Iterative Algorithm /7
999 CONTINUE

"Set Proper Season /,
QTR = MOD(T,4)
IF (QTR .EQ. 0) QTR 4

DO 40 I=i,N

// Check to Prevent Computer Precision Error, ET --- > ZERO 7,
IF (ABS(D(T) ((MC(I)+BC(I))*S(QTR)+.O0001)) .LT. .00001) THE'N

ET(1) = 0

ELSE
ET(I) = D(T) - (MC(I) + BC(1)) * S(QTR)

ENDIF
40 CONTINUE

// for Summing, set CNST 0 /
CNST = 0.0

DO 60 I=1,N

DO 50 J=IN
R1l(I,J) = VC,M(I) + 2.0 * VCMB(I) + VCBB(I)

+ + VG(J) + VD(J)

R12(I,J) = VCMB(I) + VCBB(I) + VD(J)
R22(I,J) = VCBB(I) + VD(J)

VE(I,J) = (S(QTR)**2) * Rll(I,J) + VCE(J)
Al(I,J) = S(QTR) * RIl(I,J) / VE(I,J)
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A2(I,J) SQR) R2iJ / (,)

/1, Joint Posterior Distribution at Time t /
M(I,J) = MC(I) + BC(l) + AI(I,J) ET(I)

B(l.J) = BC(I) + A2(I,j) * ET(I)

VtM =,J Rll(I,J) -(Al(I,J)**2) * VE(i-.J)

VMEB(I,J) R12(I,J) -Al(l.J) * A2(l,J),-- VE(I,J)

VBB(I,J) =R22(I.j) -(A2(1,J)*-,?) * \E(I,J)

"Develop the State Transitioi ii Matrix /

./Check to Prevent Computer Precision Error, Y - ZEPO 7
IF ((ET(I)**2/(2*XE(I,J))) .GT. 50.0) THEN

P(I,J) =0.0
ELSE

P(I,J7)=Q(l) * P1(J) * EXP((-(ET(I)**-2))/(2
4 / SORT(6.28318 * VE(I,J))

EN D. IF

CNST = CNST + P(I,J)

5() CO0NTIN1.U, ,E
0 CNT INU F

,/P(I,J) scale charge /
DO 80 T=l,N

DO 70 J=l.N
P(I,J) = P(l,J) /CNIST

70CONT"IUE

b S$CONTINLIF

/Perform the Condensation Step /
DF(Til = 0.0
DO 120 J=l N

Q (,T) = 0. 0
MC(j) =0.0

BC(J) =0.

VC.MM (J) 0 (.0(
VCMB(J) = 0.0

VCBB. J) = 0.0
DO 90 I=l,N

0(J) = Q(J) 4 P(I.J)

90 CONTINUE

DO 100 1=1 N

MC(j) MC(J) + P(I,J) * M(I..1 ) / Q(J)
BC(J) = BC(J) + P(I,J) * B(I,J) / Q(J)

1(0) CONTINUE:

/7Develop the Variance-Covariance of Condensed Valuc s

DO 110 I=1,,N
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VG'-Q1(J) =VC.M.N(J) + P(~I J) 4 ( T

+ - MC(J))**')) / Q(J)))
VCMB(J) = VCMB(J) + P(1,J) * (VMB,(1. 1) 4 ( (M2 _T)

+ - MC(J)* (?B(I,J) - BC(J)) / 91)
VCBB(J) = VCBB(J) + P(1,Jj * (VBB(l,J) + ((17

+ -BC(J))Y-' 2) 7QJ)
110 CONTINUE

W7// Compute the forecast for time T4i1/

IF (QTR .EO. 4) QTR = 0
DF(T+1) = DF(TtlI) i (9(J) * (MC(J) + BC(J)) * S(QTRM4I,

1210 C0N T I NUEZ

/7Compute Error of Forecast out next four periods /
IF ((T CE. 9) .AND. (T LE. 38)) THEN

F(l) =DF(T1-;I)
A ( 1) =D (T14 1
DO) 122 F=2,4

A,(K) =D(T-tK)
IF (QTR±K LF. 4) THE"'

F(K) = F(l) * S(QTR,+IK)

ELSE
F(K) = F(l) * S(QTR-4-fiK)

END IF
122 CONTI'WUE

DO 123 K = 1,4

"7Prevent Divide bv zero /
1F (F(K) GCE. 1.0000) F(K) =0.9999

IF (F(K) .LT. 0.00001) F(K) =0.000"11

EOF(K) = (A(K)-F(V)) * (INV(T4K))**11.5

/Sumn to Compute the MAD and MSE 7
MAD(K) = MAD(Y) + ABS(EOF(K)/30)
MSE(K) = MSE(K) + (EOF(K)**2)/3 0

123 CONTINUE

14 FORMAT(2X,4(F12.5))

END! F
IF (QTR .EQ. 0) QTR 4

,/Check Stopping- Rule 7
IF (T .LT. TMAX) THEN

/Record the old Seasonal Values /
DO 127 K =1,4

SOLD(K) S(K)
127 C ONT I NUE

7Update New Seasonal Values based upon Continuation',/
DENOM = 1
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DO 125 K 1 ,4
IF ((T-W-4) XT, 0. THE,

DENOM4 - DENOM -U44

ELSE
DENOM = DENOM;:<

ENDI F
12i CONTINUE

DD 126 K 1,4
IF ((T+15-4) AT. 1) C0TO 126
IF ((QTR+K) ALE. 4) THE,,

S(QTRiK) -(D$T4K4): / (UENOM**.25,
ELSE

S(K+QTR-4) =(D(T±K-4)) ,/ (DENOW0<25)
END iF

126C C ONT I NILE

0// Complete Weighted Update of Seasonal Values
DO 128 K = 1,z;

S(15) - (S(K)*-kEETA) (SQ D(Q*QY T1'
12 CONTINUE

*.Ca"in Iterative Proce-ss**

COTO) 909
E N DIF.,

T..ITTE(1,( I) (MAD(I: K1, .

10 P1 F ORM A T( 2X, 4 (F 12 . 1 )

VRITE(15,1002) (MSE$E' F- O
:-,02 F GRA T(2X, 4 (F 12 . 5

1 CONTINUE

S TO01
EN:
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APPENDIX C

TABLE 1. MOS GROUPS

Group Name YOS'S Sm Lrg Mjr
MOS MOS MOS
Grp Grp Grp

Combat 0302 I: 1
Combat Support 0802 1302 1802 1803 2

Combat Service 1 0108 0202 2502 2602 3

Combat Service 2 3415 4002 4302 5803 4 2' I 2

Combat Logistic 0402 3002 3060 3502 6002 5

Air Control 7204 7208 7210 7320 6

Fixed Wing Pilot 7501 7511 7522 7542 7543 7
7545 7576 3

F-18 Pilot 7521 7523 8

Rotary Wing 7556 7557 7562 7563 7564 9 2
Pilot + 7565 7566

4
NFO + 7508 7509 7581 7583 '1584 10

7585 7586 7587 7588

Basic Ground 0101 0201 0301 0401 0801
1301 1801 2501 2601 3001 11
3401 3501 4001 4301 4401
5801 6001 7201 7301 9901

1 5 3
Student Aviator 7580 7597 7598 7599 12

Basic Pilot 7500 7510 7520 7540 7550 13
7560 7575

Lawyer 4402 14 6 4
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TABLE 2. yes EXPANSION BOUNDS

DIOS Groups Small DIOS YCS Group Bounds
____ ____ ____ ___ Groups_ _ _ _ _ _ _ _ _ _

Fixed Wing 7, 8, 14 1(1-6,8-19) (7) (20-25) (26)
Pil ts, La%.-ers __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Rotary Wing [~i
Pilots, Naval (1-5,8-19) (6,7) (2-0-25) (26)
Flight Of'ficer,,

All1 Others 1-6, 1!-i3 (1-3,6-19) (4,5) ( 0-25) (26-'
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